946 resultados para Wrist Posture
Resumo:
Supporting the forearm on the work surface during keyboard operation may increase comfort, decrease muscular load of the neck and shoulders, and decrease the time spent in ulnar deviation. Wrist rests are used widely in the workplace and are more commonly being incorporated in keyboard design. The aim of this study was to examine the effect of wrist rest use on wrist posture during forearm Support. A laboratory based, experimental study was conducted (subjects n = 15) to examine muscle activity and wrist Postures during keyboard and mouse tasks in each of' two conditions; wrist rest and no wrist rest. There were no significant differences for right wrist flexion/extension between use of a wrist rest and no wrist rest for keyboard or mouse use. Left wrist extension was significantly higher without a wrist rest than with a wrist rest during keyboard use (df = 14; t = 2.95; p = 0.01; d = 0.38). No differences with respect to use of a wrist rest were found for the left or right hand for ulnar deviation For keyboard or mouse use. There were no differences in muscle activity between the test conditions for keyboard use. Relevance to industry Wrist rests are used widely in the workplace and are more commonly being incorporated in keyboard design. Use of a wrist rest in conjunction with forearm support when using a conventional desk does not appear to have any impact on wrist posture or muscle activity during keyboard use. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Forearm support during keyboard use has been reported to reduce neck and shoulder muscle activity and discomfort. However, the effect of forearm support on wrist posture has not been examined. The aim of this study was to examine the effect of 3 different postures during keyboard use: forearm support, wrist support and floating. The floating posture (no support) was used as the reference condition. A wrist rest was present in all test conditions. Thirteen participants completed 20 min wordprocessing tasks in each of the test conditions. Electromyography was used to monitor neck, shoulder and forearm muscle activity. Bilateral and overhead video cameras recorded left and right wrist extension, shoulder and elbow flexion and radial and ulnar deviation. The forearm support condition resulted in significantly less ulnar deviation (
Resumo:
Tree planting is one of the most physically demanding occupations in Canada and as a result, tree planters are at an elevated risk of injury, specifically at the wrist. Wrist injuries develop on account of the highly repetitive nature of the job, as well as other musculoskeletal risk factors including non-neutral wrist postures and high impact forces sustained at the wrist during shovel-ground impact. As a result, wrist brace use has become common among planters, in an effort to limit deviated wrist postures while also providing enhanced stability at the wrist. The external stability provided by a wrist brace is thought to reduce the muscular effort required to provide stiffness at the wrist during shovel-ground impact. Since these prospective benefits have not been formally investigated, the purpose of this study was to determine the effect of a wrist brace on wrist posture, muscle activity, and joint rotational stiffness about the wrist joint (for two degrees of freedom: flexion/extension and ulnar/radial deviation). We hypothesized that the brace would promote more neutrally aligned wrist angles, and that muscle activity and joint rotational stiffness would also decrease when participants wore the brace. Fourteen tree planters with at least one season of experience were recruited to complete two planting conditions in a laboratory setting: one condition while wearing the brace (with brace, WB) and one condition without the brace (no brace, NB). The results from this study showed that at shovel-ground impact muscle activity trended towards increasing in three muscles when participants wore the brace. Additionally, wrist angles improved about the flexion/extension axis of rotation while increasing in deviation about the ulnar/radial axis of rotation when participants wore the brace. Joint rotational stiffness increased when participants wore the wrist brace. Participants from this study indicated difficulty gripping the shovel due to the bulk of the wrist brace, and this feature is discussed with possible suggestions for future iterations of design. In addition to grip diameter this analysis also prompts the suggestion that hand length and experience should also be considered in the design of tree planting tools, specifically an ergonomic aid such as a wrist brace.
Resumo:
Objetivo: determinar la prevalencia en los últimos 6 meses de los síntomas de cuello y miembro superior además de sus factores asociados, en trabajadores de una entidad financiera call center en el periodo comprendido de abril a octubre del año 2009. Métodos: se realizó un análisis descriptivo trasversal, a través de la aplicación de un cuestionario de morbilidad sentida que abarcó aspectos demográficos, antecedentes personales y antecedentes laborales. La presencia de los síntomas se documentó en una tabla donde se confrontaron los síntomas osteomusculares y los segmentos afectados en los últimos 6 meses. Adicionalmente se les pidió a los sujetos identificar la postura más frecuente durante su trabajo mediante un diagrama. Resultados: los síntomas más prevalentes fueron dolor en la muñeca derecha (0,44; IC 95% 0,37 0,51), dolor en el cuello (0,43; IC95% 0,36 0,50), rigidez en el cuello (0,33; IC95% 0,26 0,40) y dolor en la mano derecha (0,36; IC95% 0,29 0,43). Se encontraron diferencias estadísticamente significativas en cuanto al género en la presencia de dolor en muñeca derecha (26,1% hombres contra 73,9% mujeres; p=0,005), dolor en mano derecha (25% hombres versus 75% mujeres; p=0,008), síntomas neurológicos en mano derecha (19,4% versus 80,6%; p=0,001) y dolor en hombro derecho (26,3% hombres versus 73,7% mujeres; p=0,048). También se evidencio una diferencia estadísticamente significativa en la prevalencia del síntoma dolor en muñeca derecha según el auto reporte de mayor exigencia en el desempeño (85,2% con la percepción de mayor exigencias, versus 14,8% en los sujetos que no; p=0,020). Además una diferencia estadísticamente significativa con mayor presencia de síntomas en muñecas y manos en sujetos con postura en dorsiflexión de de las mismas (muñeca derecha 72,8%, p=0,001; muñeca izquierda 43,5%, p=0,020; mano derecha 62%, p=0,003). Conclusión: después de realizar el estudio se encontró como principal síntoma el dolor, localizado en: la muñeca derecha, el cuello, la mano derecha y el hombro derecho, con diferencias mayores para el género femenino según la postura de las muñecas, lo que es compatible con las condiciones de trabajo y la respuesta fisiológica a estas condiciones.
Resumo:
The common approach of bioelectrical impedance analysis to estimate body water uses a wrist-to-ankle methodology which, although not indicated by theory, has the advantage of ease of application particularly for clinical studies involving patients with debilitating diseases. A number of authors have suggested the use of a segmental protocol in which the impedances of the trunk and limbs are measured separately to provide a methodology more in keeping with basic theory. The segmental protocol hits not, however, been generally adopted, partly because of the increased complexity involved in its application, and partly because studies comparing the two methodologies have not clearly demonstrated a significant improvement from the segmental methodology. We have conducted a small pilot study involving ten subjects to investigate the efficacy of the two methodologies in a group of normal subjects. The study did not require the independent measure of body water, by for example isotope dilution, as the subjects were maintained in a state of constant hydration with only the distribution between limbs and trunk changing as a result of change in posture. The results demonstrate a significant difference between the two methodologies in predicting the expected constancy of body water in this study, with the segmental methodology indicating a mean percentage change in extracellular water of -2.2%; which was not significantly different from the expected null result, whereas the wrist-to-ankle methodology indicated a mean percentage change in extracellular water of -6.6%. This is significantly different from the null result, and from the value obtained from the segmental methodology (p = 0.006). Similar results were obtained using estimates of total body water from the two methodologies. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
New motor rehabilitation therapies include virtual reality (VR) and robotic technologies. In limb rehabilitation, limb posture is required to (1) provide a limb realistic representation in VR games and (2) assess the patient improvement. When exoskeleton devices are used in the therapy, the measurements of their joint angles cannot be directly used to represent the posture of the patient limb, since the human and exoskeleton kinematic models differ. In response to this shortcoming, we propose a method to estimate the posture of the human limb attached to the exoskeleton. We use the exoskeleton joint angles measurements and the constraints of the exoskeleton on the limb to estimate the human limb joints angles. This paper presents (a) the mathematical formulation and solution to the problem, (b) the implementation of the proposed solution on a commercial exoskeleton system for the upper limb rehabilitation, (c) its integration into a rehabilitation VR game platform, and (d) the quantitative assessment of the method during elbow and wrist analytic training. Results show that this method properly estimates the limb posture to (i) animate avatars that represent the patient in VR games and (ii) obtain kinematic data for the patient assessment during elbow and wrist analytic rehabilitation.
Resumo:
This study assessed the effects of haptic information on the postural control systems of individuals with intellectual disabilities (ID), through the use of a nonrigid tool that we call the ""anchor system"" (e.g., ropes attached to graduated weights that rest on the floor). Eleven participants with ID were asked to stand, blindfolded, on a balance beam placed at two heights (10 and 20 cm), for 30 s, while using the anchor system at two weights. The lighter anchor weight appeared to improve the individuals' balance in contrast to a control task condition; therefore, we concluded that haptic sensitivity was more significant in helping to orient the body than was the anchor's mechanical support alone.
Resumo:
The aim of the present study was to investigate whether the perception of presentation durations of pictures of different body postures was distorted as function of the embodied movement that originally produced these postures. Participants were presented with two pictures, one with a low-arousal body posture judged to require no movement and the other with a high-arousal body posture judged to require considerable movement. In a temporal bisection task with two ranges of standard durations (0.4/1.6 s and 2/8 s), the participants had to judge whether the presentation duration of each of the pictures was more similar to the short or to the long standard duration. The results showed that the duration was judged longer for the posture requiring more movement than for the posture requiring less movement. However the magnitude of this overestimation was relatively greater for the range of short durations than for that of longer durations. Further analyses suggest that this lengthening effect was mediated by an arousal effect of limited duration on the speed of the internal clock system.
Resumo:
Diminished balance ability poses a serious health risk due to the increased likelihood of falling, and impaired postural stability is significantly associated with blindness and poor vision. Noise stimulation (by improving the detection of sub-threshold somatosensory information) and tactile supplementation (i.e. additional haptic information provided by an external contact surface) have been shown to improve the performance of the postural control system. Moreover, vibratory noise added to the source of tactile supplementation (e.g. applied to a surface that the fingertip touches) has been shown to enhance balance stability more effectively than tactile supplementation alone. In view of the above findings, in addition to the well established consensus that blind subjects show superior abilities in the use of tactile information, we hypothesized that blind subjects may take extra benefits from the vibratory noise added to the tactile supplementation and hence show greater improvements in postural stability than those observed for sighted subjects. If confirmed, this hypothesis may lay the foundation for the development of noise-based assistive devices (e.g. canes, walking sticks) for improving somatosensation and hence prevent falls in blind individuals. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Bioelectrical impedance analysis (BIA) offers the potential for a simple, portable and relatively inexpensive technique for the in vivo measurement of total body water (TBW). The potential of BIA as a technique of body composition analysis is even greater when one considers that body water can be used as a surrogate measure of lean body mass. However, BIA has not found universal acceptance even with the introduction of multi-frequency BIA (MFBIA) which, potentially, may improve the predictive accuracy of the measurement. There are a number of reasons for this lack of acceptance, although perhaps the major reason is that no single algorithm has been developed which can be applied to all subject groups. This may be due, in part, to the commonly used wrist-to-ankle protocol which is not indicated by the basic theory of bioimpedance, where the body is considered as five interconnecting cylinders. Several workers have suggested the use of segmental BIA measurements to provide a protocol more in keeping with basic theory. However, there are other difficulties associated with the application of BIA, such as effects of hydration and ion status, posture and fluid distribution. A further putative advantage of MFBIA is the independent assessment not only of TBW but also of the extracellular fluid volume (ECW), hence heralding the possibility of,being able to assess the fluid distribution between these compartments. Results of studies in this area have been, to date, mixed. Whereas strong relationships of impedance values at low frequencies with ECW, and at high frequencies with TBW, have been reported, changes in impedance are not always well correlated with changes in the size of the fluid compartments (assessed by alternative and more direct means) in pathological conditions. Furthermore, the theoretical advantages of Cole-Cole modelling over selected frequency prediction have not always been apparent. This review will consider the principles, methodology and applications of BIA. The principles and methodology will,be considered in relation to the basic theory of BIA and difficulties experienced in its application. The relative merits of single and multiple frequency BIA will be addressed, with particular attention to the latter's role in the assessment of compartmental fluid volumes. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Objective: The objectives were to determine the postural consequences of varying computer monitor height and to describe self-selected monitor heights and postures. Design: The design involved experimental manipulation of computer monitor height, description of self-selected heights, and measurement of posture and gaze angles. Background. Disagreement exists with regard to the appropriate height of computer monitors. It is known that users alter both head orientation and gaze angle in response to changes in monitor height; however the relative contribution of atlanto-occipital and cervical flexion to the change in head rotation is unknown. No information is available with regard to self-selected monitor heights. Methods. Twelve students performed a tracking task with the monitor placed at three different heights. The subjects then completed eight trials in which monitor height was first self-selected. Sagittal postural and gaze angle data were determined by digitizing markers defining a two-dimensional three-link model of the trunk, cervical spine and head. Results. The 27 degrees change in monitor height imposed was, on average, accommodated by 18 degrees of head inclination and a 9 degrees change in gaze angle relative to the head. The change in head inclination was achieved by a 6 degrees change in trunk inclination, a 4 degrees change in cervical flexion, and a 7 degrees change in atlanto-occipital flexion. The self-selected height varied depending on the initial monitor height and inclination. Conclusions. Self-selected monitor heights were lower than current 'eye-level' recommendations. Lower monitor heights are likely to reduce both visual and musculoskeletal discomfort. Relevance Musculoskeletal and visual discomfort may be reduced by placing computer monitors lower than currently recommended. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Gamma and beta radiation emitting radiopharmaceuticals are handled in nuclear medicine services, and in many cases there is only individual monitoring of gamma radiation. In this paper, the results obtained using a wrist dosimeter prototype (CaSO(4):Dy + Teflon pellets) show that the doses for workers occupationally exposed to beta radiation from (153)Sm are not negligible. It is important that this dose is evaluated, and it has to be taken into consideration in the individual monitoring system.
Resumo:
The aim of this study was to verify possible relationships between global body posture and temporomandibular joint internal derangement (TMJ-id), by comparing 30 subjects presenting typical TMJ-id signs to 20 healthy subjects. Body posture was assessed using the analysis of muscle chains on several photographs. Results show a higher frequency of lifted shoulders (p=0.04) and of changes in the antero-internal hip chain (p=0.02) in the test group, but no further differences were found significant between the control and test groups. The test group was then divided into three subgroups according to the Helkimo index of temporomandibular disorder severity. Again, no significant differences were found between the subgroups. However, there was a trend noticed in the group with the most severe dysfunction, to present a forward head and shoulders posture. Results are discussed in light of previous studies using the same sample.
Resumo:
Vascularized bone grafts have been successfully applied for the reconstruction of bone defects at the forearm, distal radius, carpus, and hand. Vascularized bone grafts are most commonly used in revision cases in which other approaches have failed. Vascularized bone grafts can be obtained from a variety of donor sites, including the fibula, the iliac crest, the distal radius (corticocancellous segments and vascularized periosteum), the metacarpals and metatarsals, and the medial femoral condyle (corticoperiosteal flaps). Their vascularity is preserved as either pedicled autografts or free flaps to carry the optimum biological potential to enhance union. The grafts can also be transferred as composite tissue flaps to reconstruct compound tissue defects. Selection of the most appropriate donor flap site is multifactorial. Considerations include size matching between donor and defect, the structural characteristics of the graft, the mechanical demands of the defect, proximity to the donor area, the need for an anastomosis, the duration of the procedure, and the donor site morbidity. This article focuses on defects of the distal radius, the wrist, and the hand. (J Hand Surg 2010;35A:1710-1718. (C) 2010 Published by Elsevier Inc. on behalf of the American Society for Surgery of the Hand.)