923 resultados para Weakly Linearly Convex Domain
Resumo:
Николай М. Николов - Разгледани са характеризации на различни понятия за изпъкналост, като тези понятия са сравнени.
Resumo:
2000 Mathematics Subject Classification: 35C10, 35C20, 35P25, 47A40, 58D30, 81U40.
Resumo:
This is an account of some aspects of the geometry of Kahler affine metrics based on considering them as smooth metric measure spaces and applying the comparison geometry of Bakry-Emery Ricci tensors. Such techniques yield a version for Kahler affine metrics of Yau s Schwarz lemma for volume forms. By a theorem of Cheng and Yau, there is a canonical Kahler affine Einstein metric on a proper convex domain, and the Schwarz lemma gives a direct proof of its uniqueness up to homothety. The potential for this metric is a function canonically associated to the cone, characterized by the property that its level sets are hyperbolic affine spheres foliating the cone. It is shown that for an n -dimensional cone, a rescaling of the canonical potential is an n -normal barrier function in the sense of interior point methods for conic programming. It is explained also how to construct from the canonical potential Monge-Ampère metrics of both Riemannian and Lorentzian signatures, and a mean curvature zero conical Lagrangian submanifold of the flat para-Kahler space.
Resumo:
Voltage-gated K+ channels are complexes of membrane-bound, ion-conducting α and cytoplasmic ancillary (β) subunits. The primary physiologic effect of coexpression of α and β subunits is to increase the intrinsic rate of inactivation of the α subunit. For one β subunit, Kvβ1.1, inactivation is enhanced through an N-type mechanism. A second β subunit, Kvβ1.2, has been shown to increase inactivation, but through a distinct mechanism. Here we show that the degree of enhancement of Kvβ1.2 inactivation is dependent on the amino acid composition in the pore mouth of the α subunit and the concentration of extracellular K+. Experimental conditions that promote C-type inactivation also enhance the stimulation of inactivation by Kvβ1.2, showing that this β subunit directly stimulates C-type inactivation. Chimeric constructs containing just the nonconserved N-terminal region of Kvβ1.2 fused with an α subunit behave in a similar fashion to coexpressed Kvβ1.2 and α subunit. This shows that it is the N-terminal domain of Kvβ1.2 that mediates the increase in C-type inactivation from the cytoplasmic side of the pore. We propose a model whereby the N terminus of Kvβ1.2 acts as a weakly binding “ball” domain that associates with the intracellular vestibule of the α subunit to effect a conformational change leading to enhancement of C-type inactivation.
Resumo:
En aquest treball es tracten qüestions de la geometria integral clàssica a l'espai hiperbòlic i projectiu complex i a l'espai hermític estàndard, els anomenats espais de curvatura holomorfa constant. La geometria integral clàssica estudia, entre d'altres, l'expressió en termes geomètrics de la mesura de plans que tallen un domini convex fixat de l'espai euclidià. Aquesta expressió es dóna en termes de les integrals de curvatura mitja. Un dels resultats principals d'aquest treball expressa la mesura de plans complexos que tallen un domini fixat a l'espai hiperbòlic complex, en termes del que definim com volums intrínsecs hermítics, que generalitzen les integrals de curvatura mitja. Una altra de les preguntes que tracta la geometria integral clàssica és: donat un domini convex i l'espai de plans, com s'expressa la integral de la s-èssima integral de curvatura mitja del convex intersecció entre un pla i el convex fixat? A l'espai euclidià, a l'espai projectiu i hiperbòlic reals, aquesta integral correspon amb la s-èssima integral de curvatura mitja del convex inicial: se satisfà una propietat de reproductibitat, que no es té en els espais de curvatura holomorfa constant. En el treball donem l'expressió explícita de la integral de la curvatura mitja quan integrem sobre l'espai de plans complexos. L'expressem en termes de la integral de curvatura mitja del domini inicial i de la integral de la curvatura normal en una direcció especial: l'obtinguda en aplicar l'estructura complexa al vector normal. La motivació per estudiar els espais de curvatura holomorfa constant i, en particular, l'espai hiperbòlic complex, es troba en l'estudi del següent problema clàssic en geometria. Quin valor pren el quocient entre l'àrea i el perímetre per a successions de figures convexes del pla que creixen tendint a omplir-lo? Fins ara es coneixia el comportament d'aquest quocient en els espais de curvatura seccional negativa i que a l'espai hiperbòlic real les fites obtingudes són òptimes. Aquí provem que a l'espai hiperbòlic complex, les cotes generals no són òptimes i optimitzem la superior.
Resumo:
This article assesses whether changes in government choice for policy concertation with trade unions and employers are better explained by international or domestic factors. We compare patterns of corporatist governance in a strongly Europeanized policy domain (labor migration policy) and in a weakly Europeanized policy domain (welfare state reforms) over the last 20 years in Austria and Switzerland. We show that there is no systematic difference in patterns of concertation between the two policy sectors and that factors linked to party politics play a bigger role in the choice of governments for concertation. If the base of party support for policies is divided, governments are more prone to resort to corporatist concertation as a way to build compromises for potentially controversial or unpopular policies. By contrast, ideologically cohesive majority coalitions are less prone to resort to concertation because they do not need to build compromises outside their base of party support.
Resumo:
The method of approximate approximations, introduced by Maz'ya [1], can also be used for the numerical solution of boundary integral equations. In this case, the matrix of the resulting algebraic system to compute an approximate source density depends only on the position of a finite number of boundary points and on the direction of the normal vector in these points (Boundary Point Method). We investigate this approach for the Stokes problem in the whole space and for the Stokes boundary value problem in a bounded convex domain G subset R^2, where the second part consists of three steps: In a first step the unknown potential density is replaced by a linear combination of exponentially decreasing basis functions concentrated near the boundary points. In a second step, integration over the boundary partial G is replaced by integration over the tangents at the boundary points such that even analytical expressions for the potential approximations can be obtained. In a third step, finally, the linear algebraic system is solved to determine an approximate density function and the resulting solution of the Stokes boundary value problem. Even not convergent the method leads to an efficient approximation of the form O(h^2) + epsilon, where epsilon can be chosen arbitrarily small.
Resumo:
The present thesis is a contribution to the multi-variable theory of Bergman and Hardy Toeplitz operators on spaces of holomorphic functions over finite and infinite dimensional domains. In particular, we focus on certain spectral invariant Frechet operator algebras F closely related to the local symbol behavior of Toeplitz operators in F. We summarize results due to B. Gramsch et.al. on the construction of Psi_0- and Psi^*-algebras in operator algebras and corresponding scales of generalized Sobolev spaces using commutator methods, generalized Laplacians and strongly continuous group actions. In the case of the Segal-Bargmann space H^2(C^n,m) of Gaussian square integrable entire functions on C^n we determine a class of vector-fields Y(C^n) supported in complex cones K. Further, we require that for any finite subset V of Y(C^n) the Toeplitz projection P is a smooth element in the Psi_0-algebra constructed by commutator methods with respect to V. As a result we obtain Psi_0- and Psi^*-operator algebras F localized in cones K. It is an immediate consequence that F contains all Toeplitz operators T_f with a symbol f of certain regularity in an open neighborhood of K. There is a natural unitary group action on H^2(C^n,m) which is induced by weighted shifts and unitary groups on C^n. We examine the corresponding Psi^*-algebra A of smooth elements in Toeplitz-C^*-algebras. Among other results sufficient conditions on the symbol f for T_f to belong to A are given in terms of estimates on its Berezin-transform. Local aspects of the Szegö projection P_s on the Heisenbeg group and the corresponding Toeplitz operators T_f with symbol f are studied. In this connection we apply a result due to Nagel and Stein which states that for any strictly pseudo-convex domain U the projection P_s is a pseudodifferential operator of exotic type (1/2, 1/2). The second part of this thesis is devoted to the infinite dimensional theory of Bergman and Hardy spaces and the corresponding Toeplitz operators. We give a new proof of a result observed by Boland and Waelbroeck. Namely, that the space of all holomorphic functions H(U) on an open subset U of a DFN-space (dual Frechet nuclear space) is a FN-space (Frechet nuclear space) equipped with the compact open topology. Using the nuclearity of H(U) we obtain Cauchy-Weil-type integral formulas for closed subalgebras A in H_b(U), the space of all bounded holomorphic functions on U, where A separates points. Further, we prove the existence of Hardy spaces of holomorphic functions on U corresponding to the abstract Shilov boundary S_A of A and with respect to a suitable boundary measure on S_A. Finally, for a domain U in a DFN-space or a polish spaces we consider the symmetrizations m_s of measures m on U by suitable representations of a group G in the group of homeomorphisms on U. In particular,in the case where m leads to Bergman spaces of holomorphic functions on U, the group G is compact and the representation is continuous we show that m_s defines a Bergman space of holomorphic functions on U as well. This leads to unitary group representations of G on L^p- and Bergman spaces inducing operator algebras of smooth elements related to the symmetries of U.
Resumo:
In 1983, M. van den Berg made his Fundamental Gap Conjecture about the difference between the first two Dirichlet eigenvalues (the fundamental gap) of any convex domain in the Euclidean plane. Recently, progress has been made in the case where the domains are polygons and, in particular, triangles. We examine the conjecture for triangles in hyperbolic geometry, though we seek an for an upper bound for the fundamental gap rather than a lower bound.
Resumo:
2010 Mathematics Subject Classification: 35A23, 35B51, 35J96, 35P30, 47J20, 52A40.
Resumo:
The design of nuclear power plant has to follow a number of regulations aimed at limiting the risks inherent in this type of installation. The goal is to prevent and to limit the consequences of any possible incident that might threaten the public or the environment. To verify that the safety requirements are met a safety assessment process is followed. Safety analysis is as key component of a safety assessment, which incorporates both probabilistic and deterministic approaches. The deterministic approach attempts to ensure that the various situations, and in particular accidents, that are considered to be plausible, have been taken into account, and that the monitoring systems and engineered safety and safeguard systems will be capable of ensuring the safety goals. On the other hand, probabilistic safety analysis tries to demonstrate that the safety requirements are met for potential accidents both within and beyond the design basis, thus identifying vulnerabilities not necessarily accessible through deterministic safety analysis alone. Probabilistic safety assessment (PSA) methodology is widely used in the nuclear industry and is especially effective in comprehensive assessment of the measures needed to prevent accidents with small probability but severe consequences. Still, the trend towards a risk informed regulation (RIR) demanded a more extended use of risk assessment techniques with a significant need to further extend PSA’s scope and quality. Here is where the theory of stimulated dynamics (TSD) intervenes, as it is the mathematical foundation of the integrated safety assessment (ISA) methodology developed by the CSN(Consejo de Seguridad Nuclear) branch of Modelling and Simulation (MOSI). Such methodology attempts to extend classical PSA including accident dynamic analysis, an assessment of the damage associated to the transients and a computation of the damage frequency. The application of this ISA methodology requires a computational framework called SCAIS (Simulation Code System for Integrated Safety Assessment). SCAIS provides accident dynamic analysis support through simulation of nuclear accident sequences and operating procedures. Furthermore, it includes probabilistic quantification of fault trees and sequences; and integration and statistic treatment of risk metrics. SCAIS comprehensively implies an intensive use of code coupling techniques to join typical thermal hydraulic analysis, severe accident and probability calculation codes. The integration of accident simulation in the risk assessment process and thus requiring the use of complex nuclear plant models is what makes it so powerful, yet at the cost of an enormous increase in complexity. As the complexity of the process is primarily focused on such accident simulation codes, the question of whether it is possible to reduce the number of required simulation arises, which will be the focus of the present work. This document presents the work done on the investigation of more efficient techniques applied to the process of risk assessment inside the mentioned ISA methodology. Therefore such techniques will have the primary goal of decreasing the number of simulation needed for an adequate estimation of the damage probability. As the methodology and tools are relatively recent, there is not much work done inside this line of investigation, making it a quite difficult but necessary task, and because of time limitations the scope of the work had to be reduced. Therefore, some assumptions were made to work in simplified scenarios best suited for an initial approximation to the problem. The following section tries to explain in detail the process followed to design and test the developed techniques. Then, the next section introduces the general concepts and formulae of the TSD theory which are at the core of the risk assessment process. Afterwards a description of the simulation framework requirements and design is given. Followed by an introduction to the developed techniques, giving full detail of its mathematical background and its procedures. Later, the test case used is described and result from the application of the techniques is shown. Finally the conclusions are presented and future lines of work are exposed.
Resumo:
The division problem consists of allocating an amount M of a perfectly divisible good among a group of n agents. Sprumont (1991) showed that if agents have single-peaked preferences over their shares, the uniform rule is the unique strategy-proof, efficient, and anonymous rule. Ching and Serizawa (1998) extended this result by showing that the set of single-plateaued preferences is the largest domain, for all possible values of M, admitting a rule (the extended uniform rule) satisfying strategy-proofness, efficiency and symmetry. We identify, for each M and n, a maximal domain of preferences under which the extended uniform rule also satisfies the properties of strategy-proofness, efficiency, continuity, and "tops-onlyness". These domains (called weakly single-plateaued) are strictly larger than the set of single-plateaued preferences. However, their intersection, when M varies from zero to infinity, coincides with the set of single-plateaued preferences.
Resumo:
Ubiquitin ligases play a pivotal role in substrate recognition and ubiquitin transfer, yet little is known about the regulation of their catalytic activity. Nedd4 (neural-precursor-cell-expressed, developmentally down-regulated 4)-2 is an E3 ubiquitin ligase composed of a C2 domain, four WW domains (protein-protein interaction domains containing two conserved tryptophan residues) that bind PY motifs (L/PPXY) and a ubiquitin ligase HECT (homologous with E6-associated protein C-terminus) domain. In the present paper we show that the WW domains of Nedd4-2 bind (weakly) to a PY motif (LPXY) located within its own HECT domain and inhibit auto-ubiquitination. Pulse-chase experiments demonstrated that mutation of the HECT PY-motif decreases the stability of Nedd4-2, suggesting that it is involved in stabilization of this E3 ligase. Interestingly, the HECT PY-motif mutation does not affect ubiquitination or down-regulation of a known Nedd4-2 substrate, ENaC (epithelial sodium channel). ENaC ubiquitination, in turn, appears to promote Nedd4-2 self-ubiquitination. These results support a model in which the inter- or intra-molecular WW-domain-HECT PY-motif interaction stabilizes Nedd4-2 by preventing self-ubiquitination. Substrate binding disrupts this interaction, allowing self-ubiquitination of Nedd4-2 and subsequent degradation, resulting in down-regulation of Nedd4-2 once it has ubiquitinated its target. These findings also point to a novel mechanism employed by a ubiquitin ligase to regulate itself differentially compared with substrate ubiquitination and stability.
Resumo:
In several computer graphics areas, a refinement criterion is often needed to decide whether to goon or to stop sampling a signal. When the sampled values are homogeneous enough, we assume thatthey represent the signal fairly well and we do not need further refinement, otherwise more samples arerequired, possibly with adaptive subdivision of the domain. For this purpose, a criterion which is verysensitive to variability is necessary. In this paper, we present a family of discrimination measures, thef-divergences, meeting this requirement. These convex functions have been well studied and successfullyapplied to image processing and several areas of engineering. Two applications to global illuminationare shown: oracles for hierarchical radiosity and criteria for adaptive refinement in ray-tracing. Weobtain significantly better results than with classic criteria, showing that f-divergences are worth furtherinvestigation in computer graphics. Also a discrimination measure based on entropy of the samples forrefinement in ray-tracing is introduced. The recursive decomposition of entropy provides us with a naturalmethod to deal with the adaptive subdivision of the sampling region
Resumo:
The magnetic properties of BaFe12O19 and BaFe10.2Sn0.74Co0.66O19 single crystals have been investigated in the temperature range (1.8 to 320 K) with a varying field from -5 to +5 T applied parallel and perpendicular to the c axis. Low-temperature magnetic relaxation, which is ascribed to the domain-wall motion, was performed between 1.8 and 15 K. The relaxation of magnetization exhibits a linear dependence on logarithmic time. The magnetic viscosity extracted from the relaxation data, decreases linearly as temperature goes down, which may correspond to the thermal depinning of domain walls. Below 2.5 K, the viscosity begins to deviate from the linear dependence on temperature, tending to be temperature independent. The near temperature independence of viscosity suggests the existence of quantum tunneling of antiferromagnetic domain wall in this temperature range.