940 resultados para Warm-moist weather
Resumo:
This research has as its object study focus bioclimatic in architecture and its conection with projects decisions, on what regards to environmental comfort for single-family dwelling. From the analysis of five architectural projects inserted in Natal/RN, warm-moist weather, this research gather informations regarding architectural features guided by shape and space arrengement, which embody important elements for the project design development. Computer simulations assisted as foundation to verify the efficiency grade for these projects strategies from shading analysis. Related strategies for the demands of natural ventilation circulation and thermal mass for refrigeration were analysed as well. Results show that there is an hierarchizing of priorities for the decisions made when it comes to shape and space disposition variables, as well as the way these variables will consider the bioclimatic demands. The analysis, even, show that there is no single way to respond to specific bioclimatic demands, as it points out the value of examination of the projectual solutions throughtout the conception process, in order to achieve an efficient project performance for the envimonment comfort
Resumo:
This research has as its object study focus bioclimatic in architecture and its conection with projects decisions, on what regards to environmental comfort for single-family dwelling. From the analysis of five architectural projects inserted in Natal/RN, warm-moist weather, this research gather informations regarding architectural features guided by shape and space arrengement, which embody important elements for the project design development. Computer simulations assisted as foundation to verify the efficiency grade for these projects strategies from shading analysis. Related strategies for the demands of natural ventilation circulation and thermal mass for refrigeration were analysed as well. Results show that there is an hierarchizing of priorities for the decisions made when it comes to shape and space disposition variables, as well as the way these variables will consider the bioclimatic demands. The analysis, even, show that there is no single way to respond to specific bioclimatic demands, as it points out the value of examination of the projectual solutions throughtout the conception process, in order to achieve an efficient project performance for the envimonment comfort
Resumo:
This research has as its object study focus bioclimatic in architecture and its conection with projects decisions, on what regards to environmental comfort for single-family dwelling. From the analysis of five architectural projects inserted in Natal/RN, warm-moist weather, this research gather informations regarding architectural features guided by shape and space arrengement, which embody important elements for the project design development. Computer simulations assisted as foundation to verify the efficiency grade for these projects strategies from shading analysis. Related strategies for the demands of natural ventilation circulation and thermal mass for refrigeration were analysed as well. Results show that there is an hierarchizing of priorities for the decisions made when it comes to shape and space disposition variables, as well as the way these variables will consider the bioclimatic demands. The analysis, even, show that there is no single way to respond to specific bioclimatic demands, as it points out the value of examination of the projectual solutions throughtout the conception process, in order to achieve an efficient project performance for the envimonment comfort
Resumo:
Mesoscale convective systems (MCSs) are relatively rare events in the UK but, when they do occur, can be associated with weather that is considered extreme with respect to climatology (as indicated by the number of such events that have been analysed as case studies). These case studies usually associate UK MCSs with a synoptic environment known as the Spanish plume. Here a previously published 17 year climatology of UK MCS events is extended to the present day (from 1998 to 2008) and these events classified according to the synoptic environment in which they form. Three distinct synoptic environments have been identified, here termed the classical Spanish plume, modified Spanish plume, and European easterly plume. Detailed case studies of the two latter, newly defined, environments are presented. Composites produced for each environment further reveal the differences between them. The classical Spanish plume is associated with an eastward propagating baroclinic cyclone that evolves according to idealised life cycle 1. Conditional instability is released from a warm moist plume of air advected northeastwards from Iberia that is capped by warmer, but very dry air, from the Spanish plateau. The modified Spanish plume is associated with a slowly moving mature frontal system associated with a forward tilting trough (and possibly cut-off low) at 500 hPa that evolves according to idealised life cycle 2. As in the classical Spanish plume, conditional instability is released from a warm plume of air advected northwards from Iberia. The less frequent European easterly plume is associated with an omega block centred over Scandinavia at upper levels. Conditional instability is released from a warm plume of air advected westwards across northern continental Europe. Unlike the Spanish plume environments, the European easterly plume is not a warm sector phenomena associated with a baroclinic cyclone. However, in all environments the organisation of convection is associated with the interaction of an upper-level disturbance with a low-level region of warm advection.
Resumo:
The South Shetland Islands are located at the northern tip of the AP which is among the fastest warming regions on Earth. The islands are especially vulnerable to climate change due to their exposure to transient low-pressure systems and their maritime climate. Surface air temperature increases (2.5K in 50 years) are concurrent with retreating glacier fronts, an increase in melt areas, ice surface lowering and rapid break-up and disintegration of ice shelves. We have compiled a unique meteorological data set for the King George Island (KGI)/Isla 25 de Mayo, the largest of the South Shetland Islands. It comprises high-temporal resolution and spatially distributed observations of surface air temperature, wind directions and wind velocities, as well as glacier ice temperatures in profile with a fully equipped automatic weather station on the Warszawa Icefield, from November 2010 and ongoing. In combination with two long-term synoptic datasets (40 and 10 years, respectively) and NCEP/NCAR reanalysis data, we have looked at changes in the climatological drivers of the glacial melt processes, and the sensitivity of the inland ice cap with regard to winter melting periods and pressure anomalies. The analysis has revealed, a positive trend of 5K over four decades in minimum surface air temperatures for winter months, clearly exceeding the published annual mean statistics, associated to a decrease in mean monthly winter sea level pressure. This concurs with a positive trend in the Southern Annular Mode (SAM) index, which gives a measure for the strength and extension of the Antarctic vortex. We connect this trend with a higher frequency of low-pressure systems hitting the South Shetland Islands during austral winter, bringing warm and moist air masses from lower latitudes. Due to its exposure to the impact of transient synoptic weather systems, the ice cap of KGI is especially vulnerable to changes during winter glacial mass accumulation period. A revision of seasonal changes in adiabatic air temperature lapse rates and their dependency on exposure and elevation has shown a clear decoupling of atmospheric surface layers between coastal areas and the higher-elevation ice cap, showing the higher sensitivity to free atmospheric flow and synoptic changes. Observed surface air temperature lapse rates show a high variability during winter months (standard deviations up to ±1.0K/100 m), and a distinct spatial variability reflecting the impact of synoptic weather patterns. The observed advective conditions bringing warm, moist air with high temperatures and rain, lead to melt conditions on the ice cap, fixating surface air temperatures to the melting point. This paper assesses the impact of large-scale atmospheric circulation variability and climatic changes on the atmospheric surface layer and glacier mass accumulation of the upper ice cap during winter season for the Warszawa Icefield on KGI.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Tree-ring records from foxtail pine (Pinus balfouriana) and western juniper (Juniperus occidentalis) growing near tree line in the eastern Sierra Nevada, California, show strong correlations with summer temperature and winter precipitation. Response surfaces portraying tree growth as a function of summer temperature and winter precipitation indicate a strong interaction between these variables in controlling growth. ... Above average growth for both foxtail pine and western juniper from AD 1480 to 1570 can be interpreted as indicating an extended period of warm, moist conditions unequalled during the 20th century.
Resumo:
The time evolution of the circulation change at the end of the Baiu season is investigated using ERA40 data. An end-day is defined for each of the 23 years based on the 850 hPa θe value at 40˚Nin the 130-140˚E sector exceeding 330 K. Daily time series of variables are composited with respect to this day. These composite time-series exhibit a clearer and more rapid change in the precipitation and the large-scale circulation over the whole East Asia region than those performed using calendar days. The precipitation change includes the abrupt end of the Baiu rain, the northward shift of tropical convection perhaps starting a few days before this, and the start of the heavier rain at higher latitudes. The northward migration of lower tropospheric warm, moist tropical air, a general feature of the seasonal march in the region, is fast over the continent and slow over the ocean. By mid to late July the cooler air over the Sea of Japan is surrounded on 3 sides by the tropical air. It is suggestive that the large-scale stage has been set for a jump to the post-Baiu state, i.e., for the end of the Baiu season. Two likely triggers for the actual change emerge from the analysis. The first is the northward movement of tropical convection into the Philippine region. The second is an equivalent barotropic Rossby wave-train, that over a 10-day period develops downstream across Eurasia. It appears likely that in most years one or both mechanisms can be important in triggering the actual end of the Baiu season.
Resumo:
The late-Holocene shift from Picea glauca (white spruce) to Picea mariana (black spruce) forests marked the establishment of modern boreal forests in Alaska. To understand the patterns and drivers of this vegetational change and the associated late-Holocene environmental dynamics, we analyzed radiocarbon-dated sediments from Grizzly Lake for chironomids, diatoms, pollen, macrofossils, charcoal, element composition, particle size, and magnetic properties for the period 4100–1800 cal BP. Chironomid assemblages reveal two episodes of decreased July temperature, at ca. 3300–3150 (ca −1 °C) and 2900–2550 cal BP (ca −2 °C). These episodes coincided with climate change elsewhere in the Northern Hemisphere, atmospheric reorganization, and low solar activity. Diatom-inferred lake levels dropped by ca. 5 m at 3200 cal BP, suggesting dry conditions during the period 3200–1800 cal BP. P. glauca declined and P. mariana expanded at ca. 3200 cal BP; this vegetational change was linked to diatom-inferred low lake levels and thus decreased moisture availability. Forest cover declined at 3300–3100, 2800–2500 and 2300–2100 cal BP and soil erosion as inferred from increased values of Al, K, Si, Ti, and Ca intensified, when solar irradiance was low. Plant taxa adapted to disturbance and cold climate (e.g. Alnus viridis, shrub Betula, Epilobium) expanded during these periods of reduced forest cover. This open vegetation type was associated with high fire activity that peaked at 2800 cal BP, when climatic conditions were particularly cold and dry. Forest recovery lagged behind subsequent climate warming (≤+3 °C) by ca. 75–225 years. Our multiproxy data set suggests that P. glauca was dominant under warm-moist climatic conditions, whereas P. mariana prevailed under cold-dry and warm-dry conditions. This pattern implies that climatic warming, as anticipated for this century, may promote P. glauca expansions, if moisture availability will be sufficiently high, while P. mariana may expand under dry conditions, possibly exacerbating climate impacts on the fire regime.
Resumo:
Coral reefs are the most diverse marine ecosystem and embrace possibly millions of plant, animal and protist species. Mutualistic symbioses are a fundamental feature of coral reefs that have been used to explain their structure, biodiversity and existence. Complex inter-relationships between hosts, habitats and symbionts belie closely coupled nutrient and community dynamics that create the circumstances for something from nothing (or the oasis in a nutrient desert). The flip side of these dynamics is a close dependency between species, which results in a series of non-linear relationships as conditions change. These responses are being highlighted as anthropogenic influences increase across the world's tropical and subtropical coastlines. Caribbean as well as Indo-Pacific coral populations are now in a serious decline in many parts of the world. This has resulted in a significant reorganization of how coral reef ecosystems function. Among the spectra of changes brought about by humans is rapid climate change. Mass coral bleaching - the loss of the dinoflagellate symbionts from reef-building corals - and mortality has affected the world's coral reefs with increasing frequency and intensity since the late 1970s. Mass bleaching events, which often cover thousands of square kilometres of coral reefs, are triggered by small increases (+1-3degreesC) in water temperature. These increases in sea temperature are often seen during warm phase weather conditions (e.g. ENSO) and are increasing in size and magnitude. The loss of living coral cover (e.g. 16% globally in 1998, an exceptionally warm year) is resulting in an as yet unspecified reduction in the abundance of a myriad of other species. Projections from general circulation models (GCM) used to project changes in global temperature indicate that conditions even under the mildest greenhouse gas emission scenarios may exceed the thermal tolerances of most reef-building coral communities. Research must now explore key issues such as the extent to which the thermal tolerances of corals and their symbionts are dynamic if bleaching and disease are linked; how the loss of high densities of reef-building coral will affect other dependent species; and, how the loss of coral populations will affect the millions of people globally who depend on coral reefs for their daily survival.
Resumo:
Mid-latitude weather systems are key contributors to the transport of atmospheric water vapour, but less is known about the role of the boundary layer in this transport. We expand a conceptual model of dry boundary-layer structure under synoptic systems to include moist processes, using idealised simulations of cyclone waves to investigate the three-way interaction between the boundary layer, atmospheric moisture and large-scale dynamics. Forced by large-scale thermal advection, boundary-layer structures develop over large areas, analogous to the daytime convective boundary layer, the nocturnal stable boundary layer and transitional regimes between these extremes.
Resumo:
The co-occurrence of warm conveyor belts (WCBs), strongly ascending moist airstreams in extratropical cyclones, and stratospheric potential vorticity (PV) streamers, indicators for breaking Rossby waves on the tropopause, is investigated for a 21-yr period in the Northern Hemisphere using Interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim) data. WCB outflows and PV streamers are respectively identified as two- and three-dimensional objects and tracked during their life cycle. PV streamers are more frequent than WCB outflows and nearly 15% of all PV streamers co-occur with WCBs during their life cycle, whereas about 60% of all WCB outflows co-occur with PV streamers. Co-occurrences are most frequent over the North Atlantic and North Pacific in spring and winter. WCB outflows are often located upstream of the PV streamers and form earlier, indicating the importance of diabatic processes for downstream Rossby wave breaking. Less frequently, PV streamers occur first, leading to the formation of new WCBs.
Resumo:
Mode of access: Internet.
Resumo:
Ascribed to Samuel Foote, apparently without justification.--Cf. Baker, Biog. dram., & Genest.
Resumo:
Mould growth in field crops or stored grain reduces starch and lipid content, with consequent increases in fibre, and an overall reduction in digestible energy; palatability is often adversely affected. If these factors are allowed for, and mycotoxin concentrations are low, there are sound economic reasons for using this cheaper grain. Mycotoxins are common in stock feed but their effects on animal productivity are usually slight because either the concentration is too low or the animal is tolerant to the toxin. In Australia, aflatoxins occur in peanut by-products and in maize and sorghum if the grain is moist when stored. Zearalenone is found in maize and in sorghum and wheat in wetter regions. Nivalenol and deoxynivalenol are found in maize and wheat but at concentrations that rarely affect pigs, with chickens and cattle being even more tolerant. Other mycotoxins including cyclopiazonic acid, T-2 toxin, cytochalasins and tenuazonic acid are produced by Australian fungi in culture but are not found to be significant grain contaminants. Extremely mouldy sorghum containing Alternaria and Fusarium mycotoxins decreased feed conversion in pigs and chickens by up to 14%. However, E moniliforme- and Diplodia maydis-infected maize produced only slight reductions in feed intake by pigs and Ustilago- infected barley produced no ill effects. Use of these grains would substantially increase profits if the grain can be purchased cheaply.
Resumo:
I. Foehn winds of southern California.
An investigation of the hot, dry and dust laden winds
occurring in the late fall and early winter in the Los Angeles
Basin and attributed in the past to the influences of the desert
regions to the north revealed that these currents were of a
foehn nature. Their properties were found to be entirely due
to dynamical heating produced in the descent from the high level
areas in the interior to the lower Los Angeles Basin. Any dust
associated with the phenomenon was found to be acquired from the
Los Angeles area rather than transported from the desert. It was
found that the frequency of occurrence of a mild type foehn of this
nature during this season was sufficient to warrant its classification
as a winter monsoon. This results from the topography of
the Los Angeles region which allows an easy entrance to the air
from the interior by virtue of the low level mountain passes north
of the area. This monsoon provides the mild winter climate of
southern California since temperatures associated with the foehn
currents are far higher than those experienced when maritime air
from the adjacent Pacific Ocean occupies the region.
II. Foehn wind cyclo-genesis.
Intense anticyclones frequently build up over the high level
regions of the Great Basin and Columbia Plateau which lie between
the Sierra Nevada and Cascade Mountains to the west and the Rocky
Mountains to the east. The outflow from these anticyclones produce
extensive foehns east of the Rockies in the comparatively low
level areas of the middle west and the Canadian provinces of
Alberta and Saskatchewan. Normally at this season of the year very
cold polar continental air masses are present over this territory
and with the occurrence of these foehns marked discontinuity surfaces
arise between the warm foehn current, which is obliged to slide over
a colder mass, and the Pc air to the east. Cyclones are
easily produced from this phenomenon and take the form of unstable
waves which propagate along the discontinuity surface between the
two dissimilar masses. A continual series of such cyclones was
found to occur as long as the Great Basin anticyclone is maintained
with undiminished intensity.
III. Weather conditions associated with the Akron disaster.
This situation illustrates the speedy development and
propagation of young disturbances in the eastern United States
during the spring of the year under the influence of the conditionally
unstable tropical maritime air masses which characterise the
region. It also furnishes an excellent example of the superiority
of air mass and frontal methods of weather prediction for aircraft
operation over the older methods based upon pressure distribution.
IV. The Los Angeles storm of December 30, 1933 to January 1, 1934.
This discussion points out some of the fundamental interactions
occurring between air masses of the North Pacific Ocean in connection
with Pacific Coast storms and the value of topographic and
aerological considerations in predicting them. Estimates of rainfall
intensity and duration from analyses of this type may be made and
would prove very valuable in the Los Angeles area in connection with
flood control problems.