965 resultados para Vertex Folkman Graph
Resumo:
In this note we prove that F (2, 2, 4) = 13.
Resumo:
Let a1 , . . . , ar, be positive integers, i=1 ... r, m = ∑(ai − 1) + 1 and p = max{a1 , . . . , ar }. For a graph G the symbol G → (a1 , . . . , ar ) means that in every r-coloring of the vertices of G there exists a monochromatic ai -clique of color i for some i ∈ {1, . . . , r}. In this paper we consider the vertex Folkman numbers F (a1 , . . . , ar ; m − 1) = min |V (G)| : G → (a1 , . . . , ar ) and Km−1 ⊂ G} We prove that F (a1 , . . . , ar ; m − 1) = m + 6, if p = 3 and m ≧ 6 (Theorem 3) and F (a1 , . . . , ar ; m − 1) = m + 7, if p = 4 and m ≧ 6 (Theorem 4).
Resumo:
2000 Mathematics Subject Classification: 05C55.
Resumo:
2000 Mathematics Subject Classification: 05C55.
Resumo:
In 1969, Lovasz asked whether every connected, vertex-transitive graph has a Hamilton path. This question has generated a considerable amount of interest, yet remains vastly open. To date, there exist no known connected, vertex-transitive graph that does not possess a Hamilton path. For the Cayley graphs, a subclass of vertex-transitive graphs, the following conjecture was made: Weak Lovász Conjecture: Every nontrivial, finite, connected Cayley graph is hamiltonian. The Chen-Quimpo Theorem proves that Cayley graphs on abelian groups flourish with Hamilton cycles, thus prompting Alspach to make the following conjecture: Alspach Conjecture: Every 2k-regular, connected Cayley graph on a finite abelian group has a Hamilton decomposition. Alspach’s conjecture is true for k = 1 and 2, but even the case k = 3 is still open. It is this case that this thesis addresses. Chapters 1–3 give introductory material and past work on the conjecture. Chapter 3 investigates the relationship between 6-regular Cayley graphs and associated quotient graphs. A proof of Alspach’s conjecture is given for the odd order case when k = 3. Chapter 4 provides a proof of the conjecture for even order graphs with 3-element connection sets that have an element generating a subgroup of index 2, and having a linear dependency among the other generators. Chapter 5 shows that if Γ = Cay(A, {s1, s2, s3}) is a connected, 6-regular, abelian Cayley graph of even order, and for some1 ≤ i ≤ 3, Δi = Cay(A/(si), {sj1 , sj2}) is 4-regular, and Δi ≄ Cay(ℤ3, {1, 1}), then Γ has a Hamilton decomposition. Alternatively stated, if Γ = Cay(A, S) is a connected, 6-regular, abelian Cayley graph of even order, then Γ has a Hamilton decomposition if S has no involutions, and for some s ∈ S, Cay(A/(s), S) is 4-regular, and of order at least 4. Finally, the Appendices give computational data resulting from C and MAGMA programs used to generate Hamilton decompositions of certain non-isomorphic Cayley graphs on low order abelian groups.
Resumo:
In this paper we compute some bounds of the Balaban index and then by means of group action we compute the Balaban index of vertex transitive graphs. ACM Computing Classification System (1998): G.2.2 , F.2.2.
Resumo:
In today’s big data world, data is being produced in massive volumes, at great velocity and from a variety of different sources such as mobile devices, sensors, a plethora of small devices hooked to the internet (Internet of Things), social networks, communication networks and many others. Interactive querying and large-scale analytics are being increasingly used to derive value out of this big data. A large portion of this data is being stored and processed in the Cloud due the several advantages provided by the Cloud such as scalability, elasticity, availability, low cost of ownership and the overall economies of scale. There is thus, a growing need for large-scale cloud-based data management systems that can support real-time ingest, storage and processing of large volumes of heterogeneous data. However, in the pay-as-you-go Cloud environment, the cost of analytics can grow linearly with the time and resources required. Reducing the cost of data analytics in the Cloud thus remains a primary challenge. In my dissertation research, I have focused on building efficient and cost-effective cloud-based data management systems for different application domains that are predominant in cloud computing environments. In the first part of my dissertation, I address the problem of reducing the cost of transactional workloads on relational databases to support database-as-a-service in the Cloud. The primary challenges in supporting such workloads include choosing how to partition the data across a large number of machines, minimizing the number of distributed transactions, providing high data availability, and tolerating failures gracefully. I have designed, built and evaluated SWORD, an end-to-end scalable online transaction processing system, that utilizes workload-aware data placement and replication to minimize the number of distributed transactions that incorporates a suite of novel techniques to significantly reduce the overheads incurred both during the initial placement of data, and during query execution at runtime. In the second part of my dissertation, I focus on sampling-based progressive analytics as a means to reduce the cost of data analytics in the relational domain. Sampling has been traditionally used by data scientists to get progressive answers to complex analytical tasks over large volumes of data. Typically, this involves manually extracting samples of increasing data size (progressive samples) for exploratory querying. This provides the data scientists with user control, repeatable semantics, and result provenance. However, such solutions result in tedious workflows that preclude the reuse of work across samples. On the other hand, existing approximate query processing systems report early results, but do not offer the above benefits for complex ad-hoc queries. I propose a new progressive data-parallel computation framework, NOW!, that provides support for progressive analytics over big data. In particular, NOW! enables progressive relational (SQL) query support in the Cloud using unique progress semantics that allow efficient and deterministic query processing over samples providing meaningful early results and provenance to data scientists. NOW! enables the provision of early results using significantly fewer resources thereby enabling a substantial reduction in the cost incurred during such analytics. Finally, I propose NSCALE, a system for efficient and cost-effective complex analytics on large-scale graph-structured data in the Cloud. The system is based on the key observation that a wide range of complex analysis tasks over graph data require processing and reasoning about a large number of multi-hop neighborhoods or subgraphs in the graph; examples include ego network analysis, motif counting in biological networks, finding social circles in social networks, personalized recommendations, link prediction, etc. These tasks are not well served by existing vertex-centric graph processing frameworks whose computation and execution models limit the user program to directly access the state of a single vertex, resulting in high execution overheads. Further, the lack of support for extracting the relevant portions of the graph that are of interest to an analysis task and loading it onto distributed memory leads to poor scalability. NSCALE allows users to write programs at the level of neighborhoods or subgraphs rather than at the level of vertices, and to declaratively specify the subgraphs of interest. It enables the efficient distributed execution of these neighborhood-centric complex analysis tasks over largescale graphs, while minimizing resource consumption and communication cost, thereby substantially reducing the overall cost of graph data analytics in the Cloud. The results of our extensive experimental evaluation of these prototypes with several real-world data sets and applications validate the effectiveness of our techniques which provide orders-of-magnitude reductions in the overheads of distributed data querying and analysis in the Cloud.
Resumo:
This thesis presents approximation algorithms for some NP-Hard combinatorial optimization problems on graphs and networks; in particular, we study problems related to Network Design. Under the widely-believed complexity-theoretic assumption that P is not equal to NP, there are no efficient (i.e., polynomial-time) algorithms that solve these problems exactly. Hence, if one desires efficient algorithms for such problems, it is necessary to consider approximate solutions: An approximation algorithm for an NP-Hard problem is a polynomial time algorithm which, for any instance of the problem, finds a solution whose value is guaranteed to be within a multiplicative factor of the value of an optimal solution to that instance. We attempt to design algorithms for which this factor, referred to as the approximation ratio of the algorithm, is as small as possible. The field of Network Design comprises a large class of problems that deal with constructing networks of low cost and/or high capacity, routing data through existing networks, and many related issues. In this thesis, we focus chiefly on designing fault-tolerant networks. Two vertices u,v in a network are said to be k-edge-connected if deleting any set of k − 1 edges leaves u and v connected; similarly, they are k-vertex connected if deleting any set of k − 1 other vertices or edges leaves u and v connected. We focus on building networks that are highly connected, meaning that even if a small number of edges and nodes fail, the remaining nodes will still be able to communicate. A brief description of some of our results is given below. We study the problem of building 2-vertex-connected networks that are large and have low cost. Given an n-node graph with costs on its edges and any integer k, we give an O(log n log k) approximation for the problem of finding a minimum-cost 2-vertex-connected subgraph containing at least k nodes. We also give an algorithm of similar approximation ratio for maximizing the number of nodes in a 2-vertex-connected subgraph subject to a budget constraint on the total cost of its edges. Our algorithms are based on a pruning process that, given a 2-vertex-connected graph, finds a 2-vertex-connected subgraph of any desired size and of density comparable to the input graph, where the density of a graph is the ratio of its cost to the number of vertices it contains. This pruning algorithm is simple and efficient, and is likely to find additional applications. Recent breakthroughs on vertex-connectivity have made use of algorithms for element-connectivity problems. We develop an algorithm that, given a graph with some vertices marked as terminals, significantly simplifies the graph while preserving the pairwise element-connectivity of all terminals; in fact, the resulting graph is bipartite. We believe that our simplification/reduction algorithm will be a useful tool in many settings. We illustrate its applicability by giving algorithms to find many trees that each span a given terminal set, while being disjoint on edges and non-terminal vertices; such problems have applications in VLSI design and other areas. We also use this reduction algorithm to analyze simple algorithms for single-sink network design problems with high vertex-connectivity requirements; we give an O(k log n)-approximation for the problem of k-connecting a given set of terminals to a common sink. We study similar problems in which different types of links, of varying capacities and costs, can be used to connect nodes; assuming there are economies of scale, we give algorithms to construct low-cost networks with sufficient capacity or bandwidth to simultaneously support flow from each terminal to the common sink along many vertex-disjoint paths. We further investigate capacitated network design, where edges may have arbitrary costs and capacities. Given a connectivity requirement R_uv for each pair of vertices u,v, the goal is to find a low-cost network which, for each uv, can support a flow of R_uv units of traffic between u and v. We study several special cases of this problem, giving both algorithmic and hardness results. In addition to Network Design, we consider certain Traveling Salesperson-like problems, where the goal is to find short walks that visit many distinct vertices. We give a (2 + epsilon)-approximation for Orienteering in undirected graphs, achieving the best known approximation ratio, and the first approximation algorithm for Orienteering in directed graphs. We also give improved algorithms for Orienteering with time windows, in which vertices must be visited between specified release times and deadlines, and other related problems. These problems are motivated by applications in the fields of vehicle routing, delivery and transportation of goods, and robot path planning.
Resumo:
The skewness sk(G) of a graph G = (V, E) is the smallest integer sk(G) >= 0 such that a planar graph can be obtained from G by the removal of sk(C) edges. The splitting number sp(G) of C is the smallest integer sp(G) >= 0 such that a planar graph can be obtained from G by sp(G) vertex splitting operations. The vertex deletion vd(G) of G is the smallest integer vd(G) >= 0 such that a planar graph can be obtained from G by the removal of vd(G) vertices. Regular toroidal meshes are popular topologies for the connection networks of SIMD parallel machines. The best known of these meshes is the rectangular toroidal mesh C(m) x C(n) for which is known the skewness, the splitting number and the vertex deletion. In this work we consider two related families: a triangulation Tc(m) x c(n) of C(m) x C(n) in the torus, and an hexagonal mesh Hc(m) x c(n), the dual of Tc(m) x c(n) in the torus. It is established that sp(Tc(m) x c(n)) = vd(Tc(m) x c(n) = sk(Hc(m) x c(n)) = sp(Hc(m) x c(n)) = vd(Hc(m) x c(n)) = min{m, n} and that sk(Tc(m) x c(n)) = 2 min {m, n}.
Resumo:
We present a computer-assisted analysis of combinatorial properties of the Cayley graphs of certain finitely generated groups: Given a group with a finite set of generators, we study the density of the corresponding Cayley graph, that is, the least upper bound for the average vertex degree (= number of adjacent edges) of any finite subgraph. It is known that an m-generated group is amenable if and only if the density of the corresponding Cayley graph equals to 2m. We test amenable and non-amenable groups, and also groups for which amenability is unknown. In the latter class we focus on Richard Thompson’s group F.
Resumo:
A graphs G is clique irreducible if every clique in G of size at least two,has an edge which does not lie in any other clique of G and is clique reducible if it is not clique irreducible. A graph G is clique vertex irreducible if every clique in G has a vertex which does not lie in any other clique of G and clique vertex reducible if it is not clique vertex irreducible. The clique vertex irreducibility and clique irreducibility of graphs which are non-complete extended p-sums (NEPS) of two graphs are studied. We prove that if G(c) has at least two non-trivial components then G is clique vertex reducible and if it has at least three non-trivial components then G is clique reducible. The cographs and the distance hereditary graphs which are clique vertex irreducible and clique irreducible are also recursively characterized.
Resumo:
A profile is a finite sequence of vertices of a graph. The set of all vertices of the graph which minimises the sum of the distances to the vertices of the profile is the median of the profile. Any subset of the vertex set such that it is the median of some profile is called a median set. The number of median sets of a graph is defined to be the median number of the graph. In this paper, we identify the median sets of various classes of graphs such as Kp − e, Kp,q forP > 2, and wheel graph and so forth. The median numbers of these graphs and hypercubes are found out, and an upper bound for the median number of even cycles is established.We also express the median number of a product graph in terms of the median number of their factors.
Resumo:
For a set S of vertices and the vertex v in a connected graph G, max x2S d(x, v) is called the S-eccentricity of v in G. The set of vertices with minimum S-eccentricity is called the S-center of G. Any set A of vertices of G such that A is an S-center for some set S of vertices of G is called a center set. We identify the center sets of certain classes of graphs namely, Block graphs, Km,n, Kn −e, wheel graphs, odd cycles and symmetric even graphs and enumerate them for many of these graph classes. We also introduce the concept of center number which is defined as the number of distinct center sets of a graph and determine the center number of some graph classes
Resumo:
We consider problems of splitting and connectivity augmentation in hypergraphs. In a hypergraph G = (V +s, E), to split two edges su, sv, is to replace them with a single edge uv. We are interested in doing this in such a way as to preserve a defined level of connectivity in V . The splitting technique is often used as a way of adding new edges into a graph or hypergraph, so as to augment the connectivity to some prescribed level. We begin by providing a short history of work done in this area. Then several preliminary results are given in a general form so that they may be used to tackle several problems. We then analyse the hypergraphs G = (V + s, E) for which there is no split preserving the local-edge-connectivity present in V. We provide two structural theorems, one of which implies a slight extension to Mader’s classical splitting theorem. We also provide a characterisation of the hypergraphs for which there is no such “good” split and a splitting result concerned with a specialisation of the local-connectivity function. We then use our splitting results to provide an upper bound on the smallest number of size-two edges we must add to any given hypergraph to ensure that in the resulting hypergraph we have λ(x, y) ≥ r(x, y) for all x, y in V, where r is an integer valued, symmetric requirement function on V*V. This is the so called “local-edge-connectivity augmentation problem” for hypergraphs. We also provide an extension to a Theorem of Szigeti, about augmenting to satisfy a requirement r, but using hyperedges. Next, in a result born of collaborative work with Zoltán Király from Budapest, we show that the local-connectivity augmentation problem is NP-complete for hypergraphs. Lastly we concern ourselves with an augmentation problem that includes a locational constraint. The premise is that we are given a hypergraph H = (V,E) with a bipartition P = {P1, P2} of V and asked to augment it with size-two edges, so that the result is k-edge-connected, and has no new edge contained in some P(i). We consider the splitting technique and describe the obstacles that prevent us forming “good” splits. From this we deduce results about which hypergraphs have a complete Pk-split. This leads to a minimax result on the optimal number of edges required and a polynomial algorithm to provide an optimal augmentation.
Resumo:
A model based on graph isomorphisms is used to formalize software evolution. Step by step we narrow the search space by an informed selection of the attributes based on the current state-of-the-art in software engineering and generate a seed solution. We then traverse the resulting space using graph isomorphisms and other set operations over the vertex sets. The new solutions will preserve the desired attributes. The goal of defining an isomorphism based search mechanism is to construct predictors of evolution that can facilitate the automation of ’software factory’ paradigm. The model allows for automation via software tools implementing the concepts.