995 resultados para Vaccine issues
Resumo:
The field of vaccinology was born from the observations by the fathers of vaccination, Edward Jenner and Louis Pasteur, that a permanent, positive change in the way our bodies respond to life-threatening infectious diseases can be obtained by specific challenge with the inactivated infectious agent performed in a controlled manner, avoiding the development of clinical disease upon exposure to the virulent pathogen. Many of the vaccines still in use today were developed on an empirical basis, essentially following the paradigm established by Pasteur, “isolate, inactivate, and inject” the disease-causing microorganism, and are capable of eliciting uniform, long-term immune memory responses that constitute the key to their proven efficacy. However, vaccines for pathogens considered as priority targets of public health concern are still lacking. The literature tends to focus more often on vaccine research problems associated with specific pathogens, but it is increasingly clear that there are common bottlenecks in vaccine research, which need to be solved in order to advance the development of the field as a whole. As part of a group of articles, the objective of the present report is to pinpoint these bottlenecks, exploring the literature for common problems and solutions in vaccine research applied to different situations. Our goal is to stimulate brainstorming among specialists of different fields related to vaccine research and development. Here, we briefly summarize the topics we intend to deal with in this discussion.
Resumo:
This paper presents, from the perspective of technological development and production, the results of an investigation examining 61 clinical studies with vaccines conducted in Brazil between 1938-2013, with the participation of the Oswaldo Cruz Institute (IOC) and the Oswaldo Cruz Foundation (Fiocruz). These studies have been identified and reviewed according to criteria, such as the kind of vaccine (viral, bacterial, parasitic), their rationale, design and methodological strategies. The results indicate that IOC and Fiocruz have accumulated along this time significant knowledge and experience for the performance of studies in all clinical phases and are prepared for the development of new vaccines products and processes. We recommend national policy strategies to overcome existing regulatory and financing constraints.
Resumo:
A cocaine vaccine'' is a promising immunotherapeutic approach to treating cocaine dependence which induces the immune system to form antibodies that prevent cocaine from crossing the blood brain barrier to act on receptor sites in the brain. Studies in rats show that cocaine antibodies block cocaine from reaching the brain and prevent the reinstatement of cocaine self administration. A successful phase 1 trial of a human cocaine vaccine has been reported. The most promising application of a cocaine vaccine is to prevent relapse to dependence in abstinent users who voluntarily enter treatment. Any use of a vaccine to treat cocaine addicts under legal coercion raises major ethical issues. If this is done at all, it should be carefully trialled first, and only after considerable clinical experience has been obtained in using the vaccine to treat voluntary patients. There will need to be an informed community debate about what role, if any, a cocaine vaccine may have as a way of preventing cocaine addiction in children and adolescents.
Resumo:
Current research and development of antigens for vaccination often center on purified recombinant proteins, viral subunits, synthetic oligopeptides or oligosaccharides, most of them suffering from being poorly immunogenic and subject to degradation. Hence, they call for efficient delivery systems and potent immunostimulants, jointly denoted as adjuvants. Particulate delivery systems like emulsions, liposomes, nanoparticles and microspheres may provide protection from degradation and facilitate the co-formulation of both the antigen and the immunostimulant. Synthetic double-stranded (ds) RNA, such as polyriboinosinic acid-polyribocytidylic acid, poly(I:C), is a mimic of viral dsRNA and, as such, a promising immunostimulant candidate for vaccines directed against intracellular pathogens. Poly(I:C) signaling is primarily dependent on Toll-like receptor 3 (TLR3), and on melanoma differentiation-associated gene-5 (MDA-5), and strongly drives cell-mediated immunity and a potent type I interferon response. However, stability and toxicity issues so far prevented the clinical application of dsRNAs as they undergo rapid enzymatic degradation and bear the potential to trigger undue immune stimulation as well as autoimmune disorders. This review addresses these concerns and suggests strategies to improve the safety and efficacy of immunostimulatory dsRNA formulations. The focus is on technological means required to lower the necessary dosage of poly(I:C), to target surface-modified microspheres passively or actively to antigen-presenting cells (APCs), to control their interaction with non-professional phagocytes and to modulate the resulting cytokine secretion profile.
Resumo:
This preliminary exploration was limited by a number of factors. The format of the study has necessarily induced some form of selection bias of the panelists, because of the complexity of some questions, and the time required to complete the questionnaires. Several issues have not been addressed. One example could be the response to HIV infection occurring in a vaccinee. The study also did not address the difficulties related to the licensing of the vaccine. Indeed, the proposed scenario assumed that the vaccine had been registered as a starting point for the analysis. Finally, it has not been possible to conduct a sensitivity analysis, in order to evaluate how the responses would have been modified if some important characteristics of the vaccine had been modified.Very diverse evaluations were given in response to questions related with attitudes and perception of AIDS and AIDS vaccine. The possibility that vaccine availability or usage can be associated with an increased frequency in risky behaviors was spontaneously mentioned by half of the panelists. The estimation of the proportion of persons at highest risk who would choose to use this vaccine also indicated a high degree of uncertainty. This study offers important lessons. According to a broad and diverse panel of individuals, an incompletely effective AIDS vaccine would result in an additional level of complexity for the AIDS prevention strategy, rather than a simplification. The use of such a vaccine would have to be coupled with counselling. This implies a sustained emphasis on the recommendations which have been central to the STOP AIDS campaigns until now. In addition, consensual issues, as well as other issues more likely to be controversial have been identified. This should greatly help focusing the work of any committee designated to develop and implement a vaccination policy if an AIDS vaccine became available. Finally, our experience with the Policy Delphi indicates that this mode of structured communication could be usefully applied to other public health issues presenting a high visibility as well as a complex relationship with public perception.
Resumo:
BACKGROUND: Recombinant adenovirus serotype 5 (rAd5)-vectored HIV-1 vaccines have not prevented HIV-1 infection or disease and pre-existing Ad5 neutralizing antibodies may limit the clinical utility of Ad5 vectors globally. Using a rare Ad serotype vector, such as Ad35, may circumvent these issues, but there are few data on the safety and immunogenicity of rAd35 directly compared to rAd5 following human vaccination. METHODS: HVTN 077 randomized 192 healthy, HIV-uninfected participants into one of four HIV-1 vaccine/placebo groups: rAd35/rAd5, DNA/rAd5, and DNA/rAd35 in Ad5-seronegative persons; and DNA/rAd35 in Ad5-seropositive persons. All vaccines encoded the HIV-1 EnvA antigen. Antibody and T-cell responses were measured 4 weeks post boost immunization. RESULTS: All vaccines were generally well tolerated and similarly immunogenic. As compared to rAd5, rAd35 was equally potent in boosting HIV-1-specific humoral and cellular immunity and responses were not significantly attenuated in those with baseline Ad5 seropositivity. Like DNA, rAd35 efficiently primed rAd5 boosting. All vaccine regimens tested elicited cross-clade antibody responses, including Env V1/V2-specific IgG responses. CONCLUSIONS: Vaccine antigen delivery by rAd35 is well-tolerated and immunogenic as a prime to rAd5 immunization and as a boost to prior DNA immunization with the homologous insert. Further development of rAd35-vectored prime-boost vaccine regimens is warranted.
Resumo:
Adjuvants have been considered for a long time to be an accessory and empirical component of vaccine formulations. However, accumulating evidence of their crucial role in initiating and directing the immune response has increased our awareness of the importance of adjuvant research in the past decade. Nevertheless, the importance of adjuvants still is not fully realized by many researchers working in the vaccine field, who are involved mostly in the search for better target antigens. The choice of a proper adjuvant can be determinant for obtaining the best results for a given vaccine candidate, but it is restricted due to intellectual property and know-how issues. Consequently, in most cases the selected adjuvant continues to be the aluminum salt, which has a record of safety, but predominantly constitutes a delivery system (DS). Ideally, new strategies should combine immune potentiators (IP) and DS by mixing both compounds or by obtaining structures that contain both IP and DS. In addition, the term immune polarizer has been introduced as an essential concept in the vaccine design strategies. Here, we review the theme, with emphasis on the discussion of the few licensed new adjuvants, the need for safe mucosal adjuvants and the adjuvant/immunopotentiating activity of conjugation. A summary of toxicology and regulatory issues will also be discussed, and the Finlay Adjuvant Platform is briefly summarized.
Resumo:
Il existe une nouvelle catégorie de technologie, les vaccins dérivés de plantes («VDPs»), qui englobe des produits qui ont un grand potentiel pour l’amélioration de la santé à l’échelle globale. Bien qu’ils ne soient pas encore disponibles pour le public, le développement des VDPs a progressé de façon telle qu’ils devraient être prêts à être mis en marché et distribués sous peu. Ainsi, c’est le moment idéal pour lancer un débat sur la meilleure façon de protéger cette nouvelle catégorie de technologie. Vu leur nature, les VDPs ne se qualifient pas parfaitement pour aucune forme de protection de propriété intellectuelle. En effet, un VDP est à la fois une variété de plante, une biotechnologie, un médicament et un produit qui vise spécifiquement les besoins de pays en voie de développement. Chacune de ces caractéristiques soulève ses propres problématiques en ce qui a trait à la propriété intellectuelle. C’est pourquoi il appert difficile d’identifier la forme de protection la plus adéquate et appropriée pour les VDPs. Cet article traite de la nature d’un VDP, des différentes catégories dans lesquelles il pourrait être classé, des différents types de systèmes de protection de propriété intellectuelle auxquels il pourrait être éligible ainsi que des problèmes qui pourraient être soulevés par tous ces éléments. Ces discussions visent à mettre l’accent sur le fait que nous avons affaire à une toute nouvelle catégorie d’innovation technologique. L’auteure est donc d’avis qu’une approche proactive est nécessaire pour discuter d’un système de protection de propriété intellectuelle en relation avec les VDPs. En ce moment, c’est l’inventeur qui choisi comment il protègera son invention. Les moyens employés par ce dernier pourraient être subséquemment modifiés ou annulés par une décision judiciaire mais comme plusieurs autres inventeurs d’une même catégorie de technologie auront probablement déjà adopté une stratégie de protection similaire, ce type de mesures judiciaire, très tard dans le processus, pourra avoir des résultats néfastes sur les détenteurs de droits. Le développement de lignes directrices d’entrée de jeu, avec l’aide d’un panel d’experts de préférence, peut contribuer à éviter les situations de confusion qui ont déjà été vécues avec l’application d’autres nouvelles technologies et qui devraient servir de leçon pour l’encadrement des VDPs.
Resumo:
Influenza virus epidemics occur on an annual basis and cause severe disease in the very young and old. The vaccine administered to high-risk groups is generated by amplifying reassortant viruses, with chronologically relevant viral surface antigens, in eggs. Every 20 years or so, influenza pandemics occur causing widespread fatality in all age groups. These viruses display novel viral surface antigens acquired from a zoonotic source, and vaccination against them poses new issues since production of large amounts of a respiratory virus containing novel surface antigens could be dangerous for those involved in manufacture. To minimise risks, it is advisable to use a virus whose genetic backbone is highly attenuated in man. Traditionally, the A/PR/8/34 strain of virus is used, however, the genetic basis of its attenuation is unclear. Cold-adapted (CA) strains of the influenza virus are all based on the H2N2 subtype, itself a virus with pandemic potential, and again the genetic basis of temperature sensitivity is not yet established. Reverse genetics technology allows us to engineer designer influenza viruses to order. Using this technology, we have been investigating mutations in several different gene segments to effectively attenuate potential vaccine strains allowing the safe production of vaccine to protect against the next pandemic. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Bos indicus bulls 20. months of age grazed on pasture in Minas Gerais, Brazil either received 2 doses of the GnRF vaccine Bopriva at d0 and d91 (group IC, n. =. 144) or were surgically castrated on d91 (group SC, n. =. 144). Slaughter on d280, was 27. weeks after castration. Adverse safety issues in 8% of group SC bulls following surgery contrasted with 0% in group IC bulls. At d105 testosterone levels were suppressed to similar levels in both groups. Importantly, group IC bulls had higher live weight, hot carcass weight, ADG (P<. 0.005) and dressing percentage (P<. 0.0001) compared to group SC animals. There were no negative effects on carcass or meat quality traits, thus immunocastration was concluded to offer a safe and effective method that provides production gains, and improves animal welfare in Bos indicus beef bulls without impacting meat and carcass quality. © 2013 Elsevier Ltd.
Resumo:
This manuscript provides an overview of past wildlife contraception efforts and discusses the current state of research. Two fertility control agents, an avian reproductive inhibitor containing the active ingredient nicarbazin and an immunocontraceptive vaccine, have received regulatory approval with the Environmental Protection Agency and are commercially available in the USA. OvoControl G Contraceptive Bait for Canada Geese and Ovo Control for pigeons are delivered as oral baits. An injectable immunocontraceptive vaccine (GonaCon Immunocontraceptive Vaccine) was registered with the Environmental Protection Agency for use in female white-tailed deer in September 2009. An injectable product (GonaCon Immunocontraceptive Vaccine) is registered for use in female white-tailed deer. Both products are labeled for use in urban/suburban areas where these species are overabundant. Several other compounds are currently being tested for use in wildlife in the USA, Europe, Australia and New Zealand that could have promise in the future. The development and use of reproductive inhibitors for resolving human–wildlife conflicts will depend on a number of factors, including meeting the requirements of regulatory agencies for use in the environment and on the biological and economical feasibility of their use. Use will also be dependent on health and safety issues and on public acceptance of the techniques.
Resumo:
Human Papillomavirus (HPV) is the most common sexually transmitted disease in the United States. Although HPV prevalence is high in the United States, there are a limited number of research studies that focus on Hispanics, who have higher incidence rates of cervical cancer than their non-Hispanic counterparts. The HPV vaccine introduced in 2006 may offer a feasible solution to the issues surrounding high prevalence of HPV. Due to the high prevalence of HPV infection among adolescents and young adults it has been suggested that HPV vaccination begin prior to onset sexual activity and focus on non-sexually active adolescents and pre-adolescents. Consequently, it has become increasingly important to assess knowledge and awareness of HPV in order to develop effective intervention strategies. This pilot study evaluated the knowledge and health beliefs of Hispanic parents regarding HPV and the HPV vaccine using a newly developed questionnaire based on the constructs of the Health Belief Model. The sample was recruited from an ob-gyn office in El Paso, Texas. Descriptive data show that the majority of the sample was female (94.1%), Hispanic (76.5%), Catholic (64.7%), and had at least a high school education (55.9%). Chi-square analysis revealed that the following variables differed amongst parents who intended to vaccinate their child against HPV and those who did not: religion (p=0.038), perceived severity item "HPV infections are easily treated" (p=0.052), perceived benefits item "It is better to vaccinate a child against an STI before they become sexually active" (p=0.014) and perceived barriers item "The HPV vaccine may have serious side effects that could harm my child" (p=0.004). Univariate logistic regression indicated that religion (OR = 4.8, CI: 1.04, 21.8) and "The HPV vaccine may have serious side effects that could harm my child" (OR = 15.9, CI: 1.73, 145.8) were significant predictors of parental intention to vaccinate. Multivariate logistic regression, using backwards elimination, indicated that religion (OR = 7.7, CI: 1.25, 47.8) and "The HPV vaccine may have serious side effects that may harm my child" (OR = 7.6, CI: 1.15, 50.2) were the best predictive variables for parental intention to vaccinate. ^
Resumo:
Genital human papillomavirus (HPV) is of public health concern because persistent infection with certain HPV types can cause cervical cancer. In response to a nationwide push for cervical cancer legislation, Texas Governor Rick Perry bypassed the traditional legislative process and issued an executive order mandating compulsory HPV vaccinations for all female public school students prior to their entrance in the sixth grade. By bypassing the legislative process Governor Perry did not effectively mitigate the risk perception issues that arose around the need for and usefulness of the vaccine mandate. This policy paper uses a social policy paradigm to identify perception as the key intervening factor on how the public responds to risk information. To demonstrate how the HPV mandate failed, it analyzes four factors, economics, politics, knowledge and culture, that shape perception and influence the public's response. By understanding the factors that influence the public's perception, public health practitioners and policy makers can more effectively create preventive health policy at the state level. ^
Resumo:
Objective. In June 2006, the first vaccine for human papillomavirus (HPV) was approved by the FDA and shortly after approval, the Advisory Committee on Immunization Practices (ACIP) voted to recommend the HPV vaccine for young girls. As a result of ACIP recommendations, state legislators introduced bills to mandate the vaccine. Policies related to public health issues, such as vaccination mandates, are often influenced by news coverage of these issues. News media, particularly in times of controversies, reinforce specific messages and plays an essential role in framing issues for the public. The objective of this study is to examine the quality, content, and scope of policies for the HPV vaccine before and after Texas Governor Rick Perry issued an executive order mandating the vaccine for middle school girls.^ Methods. The Lexis-Nexis database was used to identify 335 articles on HPV vaccination mandate policies that were published in U.S. newspapers from February 1, 2006 to February 2, 2008. The coding instrument captured information about article type, main news story concern, general information about HPV, HPV vaccine mandate policies, arguments for and against HPV vaccination mandates, arguments for and against the HPV vaccine, and sources of information.^ Results. Most news articles (82.4%) occurred after Governor Rick Perry issued an executive order mandating the HPV vaccine. Most articles mentioned that HPV is sexually transmitted (90.7%) and linked HPV infection to cervical cancer (96.1%). Only 63.9% of the articles reported that the HPV vaccine protects against types of HPV that cause cervical cancer and 18.8% of the articles reported that the vaccine protects against genital warts. Only 18.2% of the news articles presented a balanced argument regarding mandatory HPV vaccinations, and only 39.4% of the news articles presented a balanced argument for the HPV vaccine.^ Conclusions. Our study revealed that news coverage regarding mandating the HPV vaccine and issues related to the vaccine itself is biased, unbalanced, and incomplete. Since the public pays a great deal of attention to health in the media, it is essential that news stories are balanced, complete, and accurate. In order to ensure that future vaccination mandates are not covered in the same way the HPV vaccination was, public health officials, health care providers and scientists should work effectively with the media to ensure that balanced information is provided.^