998 resultados para Unbounded Operator


Relevância:

70.00% 70.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 47A48, Secondary 60G12.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper a generalization of collectively compact operator theory in Banach spaces is developed. A feature of the new theory is that the operators involved are no longer required to be compact in the norm topology. Instead it is required that the image of a bounded set under the operator family is sequentially compact in a weaker topology. As an application, the theory developed is used to establish solvability results for a class of systems of second kind integral equations on unbounded domains, this class including in particular systems of Wiener-Hopf integral equations with L1 convolutions kernels

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sufficient conditions for the existence of Lp(k)-solutions of linear nonhomogeneous impulsive differential equations with unbounded linear operator are found. An example of the theory of the linear nonhomogeneous partial impulsive differential equations of parabolic type is given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We establish an unbounded version of Stinespring's Theorem and a lifting result for Stinespring representations of completely positive modular maps defined on the space of all compact operators. We apply these results to study positivity for Schur multipliers. We characterise positive local Schur multipliers, and provide a description of positive local Schur multipliers of Toeplitz type. We introduce local operator multipliers as a non-commutative analogue of local Schur multipliers, and characterise them extending both the characterisation of operator multipliers from [16] and that of local Schur multipliers from [27]. We provide a description of the positive local operator multipliers in terms of approximation by elements of canonical positive cones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a class of boundary integral equations that arise in the study of strongly elliptic BVPs in unbounded domains of the form $D = \{(x, z)\in \mathbb{R}^{n+1} : x\in \mathbb{R}^n, z > f(x)\}$ where $f : \mathbb{R}^n \to\mathbb{R}$ is a sufficiently smooth bounded and continuous function. A number of specific problems of this type, for example acoustic scattering problems, problems involving elastic waves, and problems in potential theory, have been reformulated as second kind integral equations $u+Ku = v$ in the space $BC$ of bounded, continuous functions. Having recourse to the so-called limit operator method, we address two questions for the operator $A = I + K$ under consideration, with an emphasis on the function space setting $BC$. Firstly, under which conditions is $A$ a Fredholm operator, and, secondly, when is the finite section method applicable to $A$?

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we study Dirichlet convolution with a given arithmetical function f as a linear mapping 'f that sends a sequence (an) to (bn) where bn = Pdjn f(d)an=d. We investigate when this is a bounded operator on l2 and ¯nd the operator norm. Of particular interest is the case f(n) = n¡® for its connection to the Riemann zeta function on the line 1, 'f is bounded with k'f k = ³(®). For the unbounded case, we show that 'f : M2 ! M2 where M2 is the subset of l2 of multiplicative sequences, for many f 2 M2. Consequently, we study the `quasi'-norm sup kak = T a 2M2 k'fak kak for large T, which measures the `size' of 'f on M2. For the f(n) = n¡® case, we show this quasi-norm has a striking resemblance to the conjectured maximal order of j³(® + iT )j for ® > 12 .

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider integral equations of the form ψ(x) = φ(x) + ∫Ωk(x, y)z(y)ψ(y) dy(in operator form ψ = φ + Kzψ), where Ω is some subset ofRn(n ≥ 1). The functionsk,z, and φ are assumed known, withz ∈ L∞(Ω) and φ ∈ Y, the space of bounded continuous functions on Ω. The function ψ ∈ Yis to be determined. The class of domains Ω and kernelskconsidered includes the case Ω = Rnandk(x, y) = κ(x − y) with κ ∈ L1(Rn), in which case, ifzis the characteristic function of some setG, the integral equation is one of Wiener–Hopf type. The main theorems, proved using arguments derived from collectively compact operator theory, are conditions on a setW ⊂ L∞(Ω) which ensure that ifI − Kzis injective for allz ∈ WthenI − Kzis also surjective and, moreover, the inverse operators (I − Kz)−1onYare bounded uniformly inz. These general theorems are used to recover classical results on Wiener–Hopf integral operators of21and19, and generalisations of these results, and are applied to analyse the Lippmann–Schwinger integral equation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An operator Riccati equation from systems theory is considered in the case that all entries of the associated Hamiltonian are unbounded. Using a certain dichotomy property of the Hamiltonian and its symmetry with respect to two different indefinite inner products, we prove the existence of nonnegative and nonpositive solutions of the Riccati equation. Moreover, conditions for the boundedness and uniqueness of these solutions are established.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many advantages can be got in combining finite and boundary elements.It is the case, for example, of unbounded field problems where boundary elements can provide the appropriate conditions to represent the infinite domain while finite elements are suitable for more complex properties in the near domain. However, in spite of it, other disadvantages can appear. It would be, for instance, the loss of symmetry in the finite elements stiffness matrix, when the combination is made. On the other hand, in our days, with the strong irruption of the parallel proccessing the techniques of decomposition of domains are getting the interest of numerous scientists. With their application it is possible to separate the resolution of a problem into several subproblems. That would be beneficial in the combinations BEM-FEM as the loss of symmetry would be avoided and every technique would be applicated separately. Evidently for the correct application of these techniques it is necessary to establish the suitable transmission conditions in the interface between BEM domain and FEM domain. In this paper, one parallel method is presented which is based in the interface operator of Steklov Poincarè.