993 resultados para Ultrasensitive detection
Resumo:
We present a new method for detecting near-infrared, mid-infrared, and far-infrared photons with an ultra-high sensitivity. The infrared photon detection was carried out by monitoring the displacement change of a vibrating microcantilever under light pressure using a laser Doppler vibrometer. Ultrathin silicon cantilevers with high sensitivity were produced using micro/nano-fabrication technology. The photon detection system was set up. The response of the microcantilever to the photon illumination is theoretically estimated, and a nanowatt resolution for the infrared photon detection is expected at room temperature with this method.
Resumo:
A proof-of-concept study was reported on analysis of antigen-antibody recognition based on resonant Rayleigh scattering response of single Au nanoparticles on a microimaging chamber. As benefited by a traditional dark-field microscope and a spectrograph, tiny 30 nm Au nanoparticles were effectively used as nanosensors to monitor changes in refractive index induced by every single binding of the adsorbates. The individual Au nanoparticles were observed with very high signal-to-noise ratio, and a LSPR ?max shift of about 2.5 nm accounting for the detection of PSA antigen with concentration as low as 0.1 pg ml-1 was recorded. This resulted in the successful demonstration of a non-labelling detection system for proteins as well as thousands of different chemical or biological species with possibility of miniaturization and multiplexing scheme.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A definite diagnosis of prion diseases such as Creutzfeldt–Jakob disease (CJD) relies on the detection of pathological prion protein (PrPSc). However, no test for PrPSc in cerebrospinal fluid (CSF) has been available thus far. Based on a setup for confocal dual-color fluorescence correlation spectroscopy, a technique suitable for single molecule detection, we developed a highly sensitive detection method for PrPSc. Pathological prion protein aggregates were labeled by specific antibody probes tagged with fluorescent dyes, resulting in intensely fluorescent targets, which were measured by dual-color fluorescence intensity distribution analysis in a confocal scanning setup. In a diagnostic model system, PrPSc aggregates were detected down to a concentration of 2 pM PrPSc, corresponding to an aggregate concentration of approximately 2 fM, which was more than one order of magnitude more sensitive than Western blot analysis. A PrPSc-specific signal could also be detected in a number of CSF samples from patients with CJD but not in control samples, providing the basis for a rapid and specific test for CJD and other prion diseases. Furthermore, this method could be adapted to the sensitive detection of other disease-associated amyloid aggregates such as in Alzheimer's disease.
Resumo:
Sensitive detection of pathogens is critical to ensure the safety of food supplies and to prevent bacterial disease infection and outbreak at the first onset. While conventional techniques such as cell culture, ELISA, PCR, etc. have been used as the predominant detection workhorses, they are however limited by either time-consuming procedure, complicated sample pre-treatment, expensive analysis and operation, or inability to be implemented at point-of-care testing. Here, we present our recently developed assay exploiting enzyme-induced aggregation of plasmonic gold nanoparticles (AuNPs) for label-free and ultrasensitive detection of bacterial DNA. In the experiments, AuNPs are first functionalized with specific, single-stranded RNA probes so that they exhibit high stability in solution even under high electrolytic condition thus exhibiting red color. When bacterial DNA is present in a sample, a DNA-RNA heteroduplex will be formed and subsequently prone to the RNase H cleavage on the RNA probe, allowing the DNA to liberate and hybridize with another RNA strand. This continuously happens until all of the RNA strands are cleaved, leaving the nanoparticles ‘unprotected’. The addition of NaCl will cause the ‘unprotected’ nanoparticles to aggregate, initiating a colour change from red to blue. The reaction is performed in a multi-well plate format, and the distinct colour signal can be discriminated by naked eye or simple optical spectroscopy. As a result, bacterial DNA as low as pM could be unambiguously detected, suggesting that the enzyme-induced aggregation of AuNPs assay is very easy to perform and sensitive, it will significantly benefit to development of fast and ultrasensitive methods that can be used for disease detection and diagnosis.
Resumo:
The development of an ultrasensitive biosensor for the low-cost and on-site detection of pathogenic DNA could transform detection capabilities within food safety, environmental monitoring and clinical diagnosis. Herein, we present an innovative approach exploiting endonuclease-controlled aggregation of plasmonic gold nanoparticles (AuNPs) for label-free and ultrasensitive detection of bacterial DNA. The method utilizes RNA-functionalized AuNPs which form DNA-RNA heteroduplex structures through specific hybridization with target DNA. Once formed, the DNA-RNA heteroduplex is susceptible to RNAse H enzymatic cleavage of the RNA probe, allowing the target DNA to liberate and hybridize with another RNA probe. This continuously happens until all of the RNA probes are cleaved, leaving the nanoparticles unprotected and thus aggregated upon exposure to a high electrolytic medium. The assay is ultrasensitive, allowing the detection of target DNA at femtomolar level by simple spectroscopic analysis (40.7 fM and 2.45 fM as measured by UV-vis and dynamic light scattering (DLS), respectively). The target DNA spiked food matrix (chicken meat) is also successfully detected at a concentration of 1.2 pM (by UV-vis) or 18.0 fM (by DLS). In addition to the ultra-high sensitivity, the total analysis time of the assay is less than 3 hours, thus demonstrating its practicality for food analysis.
Resumo:
Graphene-based resonators are envisioned to build the ultimate limit of two-dimensional nanoelectromechanical system due to their ultrasensitive detection of mass, force, pressure and charge. However, such application has been greatly impeded by their extremely low quality factor. In the present work, we explore, using the large-scale molecular dynamics simulation, the possibility of tailoring the resonance properties of a bilayer graphene sheet (GS) with interlayer sp3 bonds. For the bilayer GS resonator with interlayer sp3 bonds, we discovered that the sp3 bonds can either degrade or enhance the resonance properties of the resonator depending on their density and location. It is found that the distribution of sp3 bonds only along the edges of either pristine or hydrogenated bilayer GS, leads to a greatly enhanced quality factor. A quality factor of ~1.18×105 is observed for a 3.07×15.31 nm2 bilayer GS resonator with sp3 bonds, which is more than 30 times larger comparing with that of a pristine bilayer GS. The present study demonstrates that the resonance properties of a bilayer GS resonator can be tuned by introducing sp3 bonds. This finding provides a useful guideline for the synthesis of the bilayer GS for its application as a resonator component.
Resumo:
Over the past decade, electrical detection of chemical and biological species using novel nanostructure-based devices has attracted significant attention for chemical, genomics, biomedical diagnostics, and drug discovery applications. The use of nanostructured devices in chemical/biological sensors in place of conventional sensing technologies has advantages of high sensitivity, low decreased energy consumption and potentially highly miniaturized integration. Owing to their particular structure, excellent electrical properties and high chemical stability, carbon nanotube and graphene based electrical devices have been widely developed for high performance label-free chemical/biological sensors. Here, we review the latest developments of carbon nanostructure-based transistor sensors in ultrasensitive detection of chemical/biological entities, such as poisonous gases, nucleic acids, proteins and cells.
Resumo:
We report on the development of a new class of kinase microarray for the detection of kinase inhibition based on marking peptide phosphorylation/biotinylation events by attachment of gold nanoparticles followed by silver deposition for signal enhancement. The alpha-catalytic subunit of cyclic adenosine 5'-monophosphate-dependent protein kinase (PKA), and its well-known substrate, kemptide, were used for the purpose of monitoring phosphorylation and inhibition. As expected, highly selective inhibition of PKA is demonstrated with the four inhibitors: H89, HA1077, mallotoxin, and KN62. Furthermore, an inhibition assay demonstrates the ability to detect kinase inhibition as well as derive IC50 (half-maximal inhibitory concentration) plots.
Resumo:
Natural rubber/gold nanoparticles membranes (NR/Au) were studied by ultrasensitive detection and chemical analysis through surface-enhanced Raman scattering and surface-enhanced resonance Raman scattering in our previous work (Cabrera et al., J. Raman Spectrosc. 2012, 43, 474). This article describes the studies of thermal stability and mechanical properties of SERS-active substrate sensors. The composites were prepared using NR membranes obtained by casting the latex solution as an active support (reducing/establishing agents) for the incorporation of colloidal gold nanoparticles (AuNPs). The nanoparticles were synthesized by in situ reduction at different times. The characterization of these sensors was carried out by thermogravimetry, differential scanning calorimetry, scanning electron microscopy (SEM) microscopy, and tensile tests. It is suggested an influence of nanoparticles reduction time on the thermal degradation of NR. There is an increase in thermal stability without changing the chemical properties of the polymer. For the mechanical properties, the tensile rupture was enhanced with the increase in the amount of nanoparticles incorporated in the material. © 2013 Wiley Periodicals, Inc.
Resumo:
The subject of this Ph.D. research thesis is the development and application of multiplexed analytical methods based on bioluminescent whole-cell biosensors. One of the main goals of analytical chemistry is multianalyte testing in which two or more analytes are measured simultaneously in a single assay. The advantages of multianalyte testing are work simplification, high throughput, and reduction in the overall cost per test. The availability of multiplexed portable analytical systems is of particular interest for on-field analysis of clinical, environmental or food samples as well as for the drug discovery process. To allow highly sensitive and selective analysis, these devices should combine biospecific molecular recognition with ultrasensitive detection systems. To address the current need for rapid, highly sensitive and inexpensive devices for obtaining more data from each sample,genetically engineered whole-cell biosensors as biospecific recognition element were combined with ultrasensitive bioluminescence detection techniques. Genetically engineered cell-based sensing systems were obtained by introducing into bacterial, yeast or mammalian cells a vector expressing a reporter protein whose expression is controlled by regulatory proteins and promoter sequences. The regulatory protein is able to recognize the presence of the analyte (e.g., compounds with hormone-like activity, heavy metals…) and to consequently activate the expression of the reporter protein that can be readily measured and directly related to the analyte bioavailable concentration in the sample. Bioluminescence represents the ideal detection principle for miniaturized analytical devices and multiplexed assays thanks to high detectability in small sample volumes allowing an accurate signal localization and quantification. In the first chapter of this dissertation is discussed the obtainment of improved bioluminescent proteins emitting at different wavelenghts, in term of increased thermostability, enhanced emission decay kinetic and spectral resolution. The second chapter is mainly focused on the use of these proteins in the development of whole-cell based assay with improved analytical performance. In particular since the main drawback of whole-cell biosensors is the high variability of their analyte specific response mainly caused by variations in cell viability due to aspecific effects of the sample’s matrix, an additional bioluminescent reporter has been introduced to correct the analytical response thus increasing the robustness of the bioassays. The feasibility of using a combination of two or more bioluminescent proteins for obtaining biosensors with internal signal correction or for the simultaneous detection of multiple analytes has been demonstrated by developing a dual reporter yeast based biosensor for androgenic activity measurement and a triple reporter mammalian cell-based biosensor for the simultaneous monitoring of two CYP450 enzymes activation, involved in cholesterol degradation, with the use of two spectrally resolved intracellular luciferases and a secreted luciferase as a control for cells viability. In the third chapter is presented the development of a portable multianalyte detection system. In order to develop a portable system that can be used also outside the laboratory environment even by non skilled personnel, cells have been immobilized into a new biocompatible and transparent polymeric matrix within a modified clear bottom black 384 -well microtiter plate to obtain a bioluminescent cell array. The cell array was placed in contact with a portable charge-coupled device (CCD) light sensor able to localize and quantify the luminescent signal produced by different bioluminescent whole-cell biosensors. This multiplexed biosensing platform containing whole-cell biosensors was successfully used to measure the overall toxicity of a given sample as well as to obtain dose response curves for heavy metals and to detect hormonal activity in clinical samples (PCT/IB2010/050625: “Portable device based on immobilized cells for the detection of analytes.” Michelini E, Roda A, Dolci LS, Mezzanotte L, Cevenini L , 2010). At the end of the dissertation some future development steps are also discussed in order to develop a point of care (POCT) device that combine portability, minimum sample pre-treatment and highly sensitive multiplexed assays in a short assay time. In this POCT perspective, field-flow fractionation (FFF) techniques, in particular gravitational variant (GrFFF) that exploit the earth gravitational field to structure the separation, have been investigated for cells fractionation, characterization and isolation. Thanks to the simplicity of its equipment, amenable to miniaturization, the GrFFF techniques appears to be particularly suited for its implementation in POCT devices and may be used as pre-analytical integrated module to be applied directly to drive target analytes of raw samples to the modules where biospecifc recognition reactions based on ultrasensitive bioluminescence detection occurs, providing an increase in overall analytical output.
Resumo:
Die Elemente Uran und Plutonium besitzen seit Entdeckung der Kernspaltung und der technischen Nutzung der Kernenergie eine globale Bedeutung. So trägt Pu hauptsächlich zur Radiotoxizität von abgebrannten Brennelementen bei und erfordert im Falle einer Endlagerung in einer tiefen geologischen Formation einen sicheren Verschluss für bis zu einer Million Jahre. Das Wissen über die vorliegenden chemischen Spezies ist dabei entscheidend für das Verständnis der chemisch-physikalischen Wechselwirkungen im jeweiligen geochemischen System, insbesondere mit dem Wirtsgestein (hier Ton) und den allgegenwärtigen Huminstoffen (hier Fulvinsäure). Längerfristig sind so Vorhersagen über einen Transport des hochradioaktiven Abfalls nach Auslaugung und Austritt aus einem Endlager bis in die Biosphäre möglich. Gerade der Ultraspurenbereich, im Fernfeld eines Endlagers zu erwarten, ist dabei von besonderem Interesse. Darüber hinaus machen nuklearforensische Untersuchungen – in Hinblick auf illegal benutztes Nuklearmaterial, Schmuggel oder Nuklearterrorismus – zur Bestimmung der Herkunft, des Alters oder der Radiotoxizität isotopenselektive Nachweismethoden im Ultraspurenbereich notwendig. Im Rahmen dieser Arbeit wurden hierfür die Resonanzionisationsmassenspektrometrie (RIMS) zur isotopenselektiven Spuren- und Ultraspurenanalyse von U und Pu sowie die Kapillarelektrophorese (CE) gekoppelt an die induktiv gekoppelte Plasma (ICP)-Massenspektrometrie (CE-ICP-MS) zur Speziation von Pu eingesetzt. Für den isotopenselektiven Nachweis von Ultraspurenmengen von Uran mittels RIMS wurden vorbereitende Studien durchgeführt und mehrere zweifach resonante Anregungsleitern mit nicht-resonanter Ionisation untersucht. Eine Effizienz von ca. 10^-10 bei einer Nachweisgrenze von 10^12 Atomen U-238 konnte erzielt werden. In Zusammenarbeit mit dem Institut für Radiochemie, TU München, wurde mittels RIMS die Isotopenzusammensetzung von Plutonium, abgetrennt aus einem panzerbrechenden Urangeschoss aus dem Kosovokonflikt, bestimmt und dieses als Waffenplutonium mit einem Gehalt von 15 pg Pu-239/g Uran identifiziert. Rückschlüsse über Herkunft und Alter des Plutoniums konnten daraus gewonnen werden. Für Studien zur Umweltüberwachung von Plutonium in Rheinland-Pfalz wurden Grund-, Oberflächen- und Klärwasserproben mittels RIMS untersucht. Oberhalb der Nachweisgrenze von ca. 10^7 Atomen Pu-239/500 mL konnte kein signifikanter Gehalt bestimmt werden. Zusätzlich wurden Klärschlammproben untersucht, wobei in einer Probe 5,1*10^7 Atome Pu-239/g gemessen wurde, was auf eine Anreicherung von Pu im Klärschlamm aus großen Wasservolumina hindeuten könnte. Speziationsuntersuchungen von Plutonium in Kontakt mit Fulvinsäure und dem Tonmineral Kaolinit wurden in Hinblick auf die Wechselwirkungen im Umfeld eines nuklearen Endlagers durchgeführt. Die Redoxkinetik von Pu(VI) in Kontakt mit Gorleben-Fulvinsäure zeigt eine mit steigendem pH zunehmend schnellere und vollständige Reduktion und ein vergleichbares Verhalten zur Huminsäure. Für ein Plutoniumgemisch aus allen vier umweltrelevanten Oxidationsstufen in Kontakt mit Gorleben-Fulvinsäure konnte nach ca. 1 Monat Kontaktzeit eine fasst vollständige Reduktion zum tri- und tetravalenten Pu beobachtet werden. Sorptionsuntersuchungen der stabilsten Oxidationsstufe, Pu(IV), in Kontakt mit Kaolinit bei pH = 0 bis 13 im Konzentrationsbereich 10^-7 bis 10^-9 mol/L verdeutlichen das ausgeprägte Sorptionsverhalten von Pu(IV) (ca. 60% bis 90% Sorption) im umweltrelevanten pH-Bereich bei einem Einsetzen der Sorption bei pH = 0 bis 2. Im Rahmen des "Colloid and Radionuclide Retardation" (CRR) Experiments im Felslabor Grimsel, Schweizer Alpen, wurde in Zusammenarbeit mit dem Institut für Nukleare Entsorgung, Karlsruhe, die kolloidgetragene Migration von Pu(IV) in einem Grundwasserstrom durch Scherzonen im Granitgestein unter umweltrelevanten Bedingungen untersucht. Bei Zugabe von im Grundwasser stabilen Bentonitkolloiden – Bentonit wird als ein geeignetes Verschlussmaterial für nukleare Abfälle erforscht – konnte ein erhöhter Transport des Pu(IV) beobachtet werden, der durch Sorption des Pu an die mobilen Kolloide hervorgerufen wird. Zur Speziation von Plutonium im Ultraspurenbereich wurde im Rahmen dieser Arbeit an der Entwicklung der Kopplung der CE mit der sehr sensitiven RIMS gearbeitet. Das Prinzip der offline-Kopplung basiert auf dem Sammeln der zu unterschiedlichen Zeiten am Ende der Kapillare eluierten Oxidationsstufen in einzelnen Fraktionen. Aus jeder Fraktion wird ein eigenes Filament hergestellt und mit RIMS auf seinen Plutoniumgehalt untersucht. Eine erste Validierung der Methode konnte durch Bestimmung der Oxidationsstufenzusammensetzung eines bekannten Gemischs erfolgreich für einen Gehalt von ca. 6*10^9 Atome Pu-239 durchgeführt werden. Dies stellt einen möglichen Zugang zu dem erwarteten Konzentrationsbereich im Fernfeld eines Endlagers dar.
Resumo:
This thesis explores the potential of chiral plasmonic nanostructures for the ultrasensitive detection of protein structure. These nanostructures support the generation of fields with enhanced chirality relative to circularly polarised light and are an extremely incisive probe of protein structure. In chapter 4 we introduce a nanopatterned Au film (Templated Plasmonic Substrate, TPS) fabricated using a high through-put injection moulding technique which is a viable alternative to expensive lithographically fabricated nanostructures. The optical and chiroptical properties of TPS nanostructures are found to be highly dependent on the coupling between the electric and magnetic modes of the constituent solid and inverse structures. Significantly, refractive index based measurements of strongly coupled TPSs display a similar sensitivity to protein structure as previous lithographic nanostructures. We subsequently endeavour to improve the sensing properties of TPS nanostructures by developing a high through-put nanoscale chemical functionalisation technique. This process involves a chemical protection/deprotection strategy. The protection step generates a self-assembled monolayer (SAM) of a thermally responsive polymer on the TPS surface which inhibits protein binding. The deprotection step exploits the presence of nanolocalised thermal gradients in the water surrounding the TPS upon irradiation with an 8ns pulsed laser to modify the SAM conformation on surfaces with high net chirality. This allows binding of biomaterial in these regions and subsequently enhances the TPS sensitivity levels. In chapter 6 an alternative method for the detection of protein structure using TPS nanostructures is introduced. This technique relies on mediation of the electric/magnetic coupling in the TPS by the adsorbed protein. This phenomenon is probed through both linear reflectance and nonlinear second harmonic generation (SHG) measurements. Detection of protein structure using this method does not require the presence of fields of enhanced chirality whilst it is also sensitive to a larger array of secondary structure motifs than the measurements in chapters 4 and 5. Finally, a preliminary investigation into the detection of mesoscale biological structure is presented. Sensitivity to the mesoscale helical pitch of insulin amyloid fibrils is displayed through the asymmetry in the circular dichroism (CD) of lithographic gammadions of varying thickness upon adsorption of insulin amyloid fibril spherulites and fragmented fibrils. The proposed model for this sensitivity to the helical pitch relies on the vertical height of the nanostructures relative to this structural property as well as the binding orientation of the fibrils.