918 resultados para Turing machines.
Resumo:
According to certain arguments, computation is observer-relative either in the sense that many physical systems implement many computations (Hilary Putnam), or in the sense that almost all physical systems implement all computations (John Searle). If sound, these arguments have a potentially devastating consequence for the computational theory of mind: if arbitrary physical systems can be seen to implement arbitrary computations, the notion of computation seems to lose all explanatory power as far as brains and minds are concerned. David Chalmers and B. Jack Copeland have attempted to counter these relativist arguments by placing certain constraints on the definition of implementation. In this thesis, I examine their proposals and find both wanting in some respects. During the course of this examination, I give a formal definition of the class of combinatorial-state automata , upon which Chalmers s account of implementation is based. I show that this definition implies two theorems (one an observation due to Curtis Brown) concerning the computational power of combinatorial-state automata, theorems which speak against founding the theory of implementation upon this formalism. Toward the end of the thesis, I sketch a definition of the implementation of Turing machines in dynamical systems, and offer this as an alternative to Chalmers s and Copeland s accounts of implementation. I demonstrate that the definition does not imply Searle s claim for the universal implementation of computations. However, the definition may support claims that are weaker than Searle s, yet still troubling to the computationalist. There remains a kernel of relativity in implementation at any rate, since the interpretation of physical systems seems itself to be an observer-relative matter, to some degree at least. This observation helps clarify the role the notion of computation can play in cognitive science. Specifically, I will argue that the notion should be conceived as an instrumental rather than as a fundamental or foundational one.
Resumo:
Cette thèse est consacrée à la complexité basée sur le paradigme des preuves interactives. Les classes ainsi définies ont toutes en commun qu’un ou plusieurs prouveurs, infiniment puissants, tentent de convaincre un vérificateur, de puissance bornée, de l’appartenance d’un mot à un langage. Nous abordons ici le modèle classique, où les participants sont des machines de Turing, et le modèle quantique, où ceux-ci sont des circuits quantiques. La revue de littérature que comprend cette thèse s’adresse à un lecteur déjà familier avec la complexité et l’informatique quantique. Cette thèse présente comme résultat la caractérisation de la classe NP par une classe de preuves interactives quantiques de taille logarithmique. Les différentes classes sont présentées dans un ordre permettant d’aborder aussi facilement que possible les classes interactives. Le premier chapitre est consacré aux classes de base de la complexité ; celles-ci seront utiles pour situer les classes subséquemment présentées. Les chapitres deux et trois présentent respectivement les classes à un et à plusieurs prouveurs. La présentation du résultat ci-haut mentionné est l’objet du chapitre quatre.
Resumo:
This report explores how recurrent neural networks can be exploited for learning high-dimensional mappings. Since recurrent networks are as powerful as Turing machines, an interesting question is how recurrent networks can be used to simplify the problem of learning from examples. The main problem with learning high-dimensional functions is the curse of dimensionality which roughly states that the number of examples needed to learn a function increases exponentially with input dimension. This thesis proposes a way of avoiding this problem by using a recurrent network to decompose a high-dimensional function into many lower dimensional functions connected in a feedback loop.
Resumo:
High-level introduction for web science students, rather than for computer science students.
Resumo:
The perspex machine arose from the unification of projective geometry with the Turing machine. It uses a total arithmetic, called transreal arithmetic, that contains real arithmetic and allows division by zero. Transreal arithmetic is redefined here. The new arithmetic has both a positive and a negative infinity which lie at the extremes of the number line, and a number nullity that lies off the number line. We prove that nullity, 0/0, is a number. Hence a number may have one of four signs: negative, zero, positive, or nullity. It is, therefore, impossible to encode the sign of a number in one bit, as floating-, point arithmetic attempts to do, resulting in the difficulty of having both positive and negative zeros and NaNs. Transrational arithmetic is consistent with Cantor arithmetic. In an extension to real arithmetic, the product of zero, an infinity, or nullity with its reciprocal is nullity, not unity. This avoids the usual contradictions that follow from allowing division by zero. Transreal arithmetic has a fixed algebraic structure and does not admit options as IEEE, floating-point arithmetic does. Most significantly, nullity has a simple semantics that is related to zero. Zero means "no value" and nullity means "no information." We argue that nullity is as useful to a manufactured computer as zero is to a human computer. The perspex machine is intended to offer one solution to the mind-body problem by showing how the computable aspects of mind and. perhaps, the whole of mind relates to the geometrical aspects of body and, perhaps, the whole of body. We review some of Turing's writings and show that he held the view that his machine has spatial properties. In particular, that it has the property of being a 7D lattice of compact spaces. Thus, we read Turing as believing that his machine relates computation to geometrical bodies. We simplify the perspex machine by substituting an augmented Euclidean geometry for projective geometry. This leads to a general-linear perspex-machine which is very much easier to pro-ram than the original perspex-machine. We then show how to map the whole of perspex space into a unit cube. This allows us to construct a fractal of perspex machines with the cardinality of a real-numbered line or space. This fractal is the universal perspex machine. It can solve, in unit time, the halting problem for itself and for all perspex machines instantiated in real-numbered space, including all Turing machines. We cite an experiment that has been proposed to test the physical reality of the perspex machine's model of time, but we make no claim that the physical universe works this way or that it has the cardinality of the perspex machine. We leave it that the perspex machine provides an upper bound on the computational properties of physical things, including manufactured computers and biological organisms, that have a cardinality no greater than the real-number line.
Resumo:
Computational formalisms have been pushing the boundaries of the field of computing for the last 80 years and much debate has surrounded what computing entails; what it is, and what it is not. This paper seeks to explore the boundaries of the ideas of computation and provide a framework for enabling a constructive discussion of computational ideas. First, a review of computing is given, ranging from Turing Machines to interactive computing. Then, a variety of natural physical systems are considered for their computational qualities. From this exploration, a framework is presented under which all dynamical systems can be considered as instances of the class of abstract computational platforms. An abstract computational platform is defined by both its intrinsic dynamics and how it allows computation that is meaningful to an external agent through the configuration of constraints upon those dynamics. It is asserted that a platform’s computational expressiveness is directly related to the freedom with which constraints can be placed. Finally, the requirements for a formal constraint description language are considered and it is proposed that Abstract State Machines may provide a reasonable basis for such a language.
Resumo:
In this paper the architecture of an experimental multiparadigmatic programming environment is sketched, showing how its parts combine together with application modules in order to perform the integration of program modules written in different programming languages and paradigms. Adaptive automata are special self-modifying formal state machines used as a design and implementation tool in the representation of complex systems. Adaptive automata have been proven to have the same formal power as Turing Machines. Therefore, at least in theory, arbitrarily complex systems may be modeled with adaptive automata. The present work briefly introduces such formal tool and presents case studies showing how to use them in two very different situations: the first one, in the name management module of a multi-paradigmatic and multi-language programming environment, and the second one, in an application program implementing an adaptive automaton that accepts a context-sensitive language.
Resumo:
This undergraduate thesis aims formally define aspects of Quantum Turing Machine using as a basis quantum finite automata. We introduce the basic concepts of quantum mechanics and quantum computing through principles such as superposition, entanglement of quantum states, quantum bits and algorithms. We demonstrate the Bell's teleportation theorem, enunciated in the form of Deutsch-Jozsa definition for quantum algorithms. The way as the overall text were written omits formal aspects of quantum mechanics, encouraging computer scientists to understand the framework of quantum computation. We conclude our thesis by listing the Quantum Turing Machine's main limitations regarding the well-known Classical Turing Machines
Resumo:
This undergraduate thesis aims formally define aspects of Quantum Turing Machine using as a basis quantum finite automata. We introduce the basic concepts of quantum mechanics and quantum computing through principles such as superposition, entanglement of quantum states, quantum bits and algorithms. We demonstrate the Bell's teleportation theorem, enunciated in the form of Deutsch-Jozsa definition for quantum algorithms. The way as the overall text were written omits formal aspects of quantum mechanics, encouraging computer scientists to understand the framework of quantum computation. We conclude our thesis by listing the Quantum Turing Machine's main limitations regarding the well-known Classical Turing Machines
Resumo:
The aim of this thesis is to go through different approaches for proving expressiveness properties in several concurrent languages. We analyse four different calculi exploiting for each one a different technique.
We begin with the analysis of a synchronous language, we explore the expressiveness of a fragment of CCS! (a variant of Milner's CCS where replication is considered instead of recursion) w.r.t. the existence of faithful encodings (i.e. encodings that respect the behaviour of the encoded model without introducing unnecessary computations) of models of computability strictly less expressive than Turing Machines. Namely, grammars of types 1,2 and 3 in the Chomsky Hierarchy.
We then move to asynchronous languages and we study full abstraction for two Linda-like languages. Linda can be considered as the asynchronous version of CCS plus a shared memory (a multiset of elements) that is used for storing messages. After having defined a denotational semantics based on traces, we obtain fully abstract semantics for both languages by using suitable abstractions in order to identify different traces which do not correspond to different behaviours.
Since the ability of one of the two variants considered of recognising multiple occurrences of messages in the store (which accounts for an increase of expressiveness) reflects in a less complex abstraction, we then study other languages where multiplicity plays a fundamental role. We consider the language CHR (Constraint Handling Rules) a language which uses multi-headed (guarded) rules. We prove that multiple heads augment the expressive power of the language. Indeed we show that if we restrict to rules where the head contains at most n atoms we could generate a hierarchy of languages with increasing expressiveness (i.e. the CHR language allowing at most n atoms in the heads is more expressive than the language allowing at most m atoms, with m
Resumo:
In this thesis we provide a characterization of probabilistic computation in itself, from a recursion-theoretical perspective, without reducing it to deterministic computation. More specifically, we show that probabilistic computable functions, i.e., those functions which are computed by Probabilistic Turing Machines (PTM), can be characterized by a natural generalization of Kleene's partial recursive functions which includes, among initial functions, one that returns identity or successor with probability 1/2. We then prove the equi-expressivity of the obtained algebra and the class of functions computed by PTMs. In the the second part of the thesis we investigate the relations existing between our recursion-theoretical framework and sub-recursive classes, in the spirit of Implicit Computational Complexity. More precisely, endowing predicative recurrence with a random base function is proved to lead to a characterization of polynomial-time computable probabilistic functions.
Resumo:
A. N. Turing’s 1936 concept of computability, computing machines, and computable binary digital sequences, is subject to Turing’s Cardinality Paradox. The paradox conjoins two opposed but comparably powerful lines of argument, supporting the propositions that the cardinality of dedicated Turing machines outputting all and only the computable binary digital sequences can only be denumerable, and yet must also be nondenumerable. Turing’s objections to a similar kind of diagonalization are answered, and the implications of the paradox for the concept of a Turing machine, computability, computable sequences, and Turing’s effort to prove the unsolvability of the Entscheidungsproblem, are explained in light of the paradox. A solution to Turing’s Cardinality Paradox is proposed, positing a higher geometrical dimensionality of machine symbol-editing information processing and storage media than is available to canonical Turing machine tapes. The suggestion is to add volume to Turing’s discrete two-dimensional machine tape squares, considering them instead as similarly ideally connected massive three-dimensional machine information cells. Three-dimensional computing machine symbol-editing information processing cells, as opposed to Turing’s two-dimensional machine tape squares, can take advantage of a denumerably infinite potential for parallel digital sequence computing, by which to accommodate denumerably infinitely many computable diagonalizations. A three-dimensional model of machine information storage and processing cells is recommended on independent grounds as better representing the biological realities of digital information processing isomorphisms in the three-dimensional neural networks of living computers.
Resumo:
Membrane systems are computational equivalent to Turing machines. However, their distributed and massively parallel nature obtains polynomial solutions opposite to traditional non-polynomial ones. At this point, it is very important to develop dedicated hardware and software implementations exploiting those two membrane systems features. Dealing with distributed implementations of P systems, the bottleneck communication problem has arisen. When the number of membranes grows up, the network gets congested. The purpose of distributed architectures is to reach a compromise between the massively parallel character of the system and the needed evolution step time to transit from one configuration of the system to the next one, solving the bottleneck communication problem. The goal of this paper is twofold. Firstly, to survey in a systematic and uniform way the main results regarding the way membranes can be placed on processors in order to get a software/hardware simulation of P-Systems in a distributed environment. Secondly, we improve some results about the membrane dissolution problem, prove that it is connected, and discuss the possibility of simulating this property in the distributed model. All this yields an improvement in the system parallelism implementation since it gets an increment of the parallelism of the external communication among processors. Proposed ideas improve previous architectures to tackle the communication bottleneck problem, such as reduction of the total time of an evolution step, increase of the number of membranes that could run on a processor and reduction of the number of processors.
Resumo:
La informática teórica es una disciplina básica ya que la mayoría de los avances en informática se sustentan en un sólido resultado de esa materia. En los últimos a~nos debido tanto al incremento de la potencia de los ordenadores, como a la cercanía del límite físico en la miniaturización de los componentes electrónicos, resurge el interés por modelos formales de computación alternativos a la arquitectura clásica de von Neumann. Muchos de estos modelos se inspiran en la forma en la que la naturaleza resuelve eficientemente problemas muy complejos. La mayoría son computacionalmente completos e intrínsecamente paralelos. Por este motivo se les está llegando a considerar como nuevos paradigmas de computación (computación natural). Se dispone, por tanto, de un abanico de arquitecturas abstractas tan potentes como los computadores convencionales y, a veces, más eficientes: alguna de ellas mejora el rendimiento, al menos temporal, de problemas NPcompletos proporcionando costes no exponenciales. La representación formal de las redes de procesadores evolutivos requiere de construcciones, tanto independientes, como dependientes del contexto, dicho de otro modo, en general una representación formal completa de un NEP implica restricciones, tanto sintácticas, como semánticas, es decir, que muchas representaciones aparentemente (sintácticamente) correctas de casos particulares de estos dispositivos no tendrían sentido porque podrían no cumplir otras restricciones semánticas. La aplicación de evolución gramatical semántica a los NEPs pasa por la elección de un subconjunto de ellos entre los que buscar los que solucionen un problema concreto. En este trabajo se ha realizado un estudio sobre un modelo inspirado en la biología celular denominado redes de procesadores evolutivos [55, 53], esto es, redes cuyos nodos son procesadores muy simples capaces de realizar únicamente un tipo de mutación puntual (inserción, borrado o sustitución de un símbolo). Estos nodos están asociados con un filtro que está definido por alguna condición de contexto aleatorio o de pertenencia. Las redes están formadas a lo sumo de seis nodos y, teniendo los filtros definidos por una pertenencia a lenguajes regulares, son capaces de generar todos los lenguajes enumerables recursivos independientemente del grafo subyacente. Este resultado no es sorprendente ya que semejantes resultados han sido documentados en la literatura. Si se consideran redes con nodos y filtros definidos por contextos aleatorios {que parecen estar más cerca a las implementaciones biológicas{ entonces se pueden generar lenguajes más complejos como los lenguajes no independientes del contexto. Sin embargo, estos mecanismos tan simples son capaces de resolver problemas complejos en tiempo polinomial. Se ha presentado una solución lineal para un problema NP-completo, el problema de los 3-colores. Como primer aporte significativo se ha propuesto una nueva dinámica de las redes de procesadores evolutivos con un comportamiento no determinista y masivamente paralelo [55], y por tanto todo el trabajo de investigación en el área de la redes de procesadores se puede trasladar a las redes masivamente paralelas. Por ejemplo, las redes masivamente paralelas se pueden modificar de acuerdo a determinadas reglas para mover los filtros hacia las conexiones. Cada conexión se ve como un canal bidireccional de manera que los filtros de entrada y salida coinciden. A pesar de esto, estas redes son computacionalmente completas. Se pueden también implementar otro tipo de reglas para extender este modelo computacional. Se reemplazan las mutaciones puntuales asociadas a cada nodo por la operación de splicing. Este nuevo tipo de procesador se denomina procesador splicing. Este modelo computacional de Red de procesadores con splicing ANSP es semejante en cierto modo a los sistemas distribuidos en tubos de ensayo basados en splicing. Además, se ha definido un nuevo modelo [56] {Redes de procesadores evolutivos con filtros en las conexiones{ , en el cual los procesadores tan solo tienen reglas y los filtros se han trasladado a las conexiones. Dicho modelo es equivalente, bajo determinadas circunstancias, a las redes de procesadores evolutivos clásicas. Sin dichas restricciones el modelo propuesto es un superconjunto de los NEPs clásicos. La principal ventaja de mover los filtros a las conexiones radica en la simplicidad de la modelización. Otras aportaciones de este trabajo ha sido el dise~no de un simulador en Java [54, 52] para las redes de procesadores evolutivos propuestas en esta Tesis. Sobre el término "procesador evolutivo" empleado en esta Tesis, el proceso computacional descrito aquí no es exactamente un proceso evolutivo en el sentido Darwiniano. Pero las operaciones de reescritura que se han considerado pueden interpretarse como mutaciones y los procesos de filtrado se podrían ver como procesos de selección. Además, este trabajo no abarca la posible implementación biológica de estas redes, a pesar de ser de gran importancia. A lo largo de esta tesis se ha tomado como definición de la medida de complejidad para los ANSP, una que denotaremos como tama~no (considerando tama~no como el número de nodos del grafo subyacente). Se ha mostrado que cualquier lenguaje enumerable recursivo L puede ser aceptado por un ANSP en el cual el número de procesadores está linealmente acotado por la cardinalidad del alfabeto de la cinta de una máquina de Turing que reconoce dicho lenguaje L. Siguiendo el concepto de ANSP universales introducido por Manea [65], se ha demostrado que un ANSP con una estructura de grafo fija puede aceptar cualquier lenguaje enumerable recursivo. Un ANSP se puede considerar como un ente capaz de resolver problemas, además de tener otra propiedad relevante desde el punto de vista práctico: Se puede definir un ANSP universal como una subred, donde solo una cantidad limitada de parámetros es dependiente del lenguaje. La anterior característica se puede interpretar como un método para resolver cualquier problema NP en tiempo polinomial empleando un ANSP de tama~no constante, concretamente treinta y uno. Esto significa que la solución de cualquier problema NP es uniforme en el sentido de que la red, exceptuando la subred universal, se puede ver como un programa; adaptándolo a la instancia del problema a resolver, se escogerín los filtros y las reglas que no pertenecen a la subred universal. Un problema interesante desde nuestro punto de vista es el que hace referencia a como elegir el tama~no optimo de esta red.---ABSTRACT---This thesis deals with the recent research works in the area of Natural Computing {bio-inspired models{, more precisely Networks of Evolutionary Processors first developed by Victor Mitrana and they are based on P Systems whose father is Georghe Paun. In these models, they are a set of processors connected in an underlying undirected graph, such processors have an object multiset (strings) and a set of rules, named evolution rules, that transform objects inside processors[55, 53],. These objects can be sent/received using graph connections provided they accomplish constraints defined at input and output filters processors have. This symbolic model, non deterministic one (processors are not synchronized) and massive parallel one[55] (all rules can be applied in one computational step) has some important properties regarding solution of NP-problems in lineal time and of course, lineal resources. There are a great number of variants such as hybrid networks, splicing processors, etc. that provide the model a computational power equivalent to Turing machines. The origin of networks of evolutionary processors (NEP for short) is a basic architecture for parallel and distributed symbolic processing, related to the Connection Machine as well as the Logic Flow paradigm, which consists of several processors, each of them being placed in a node of a virtual complete graph, which are able to handle data associated with the respective node. All the nodes send simultaneously their data and the receiving nodes handle also simultaneously all the arriving messages, according to some strategies. In a series of papers one considers that each node may be viewed as a cell having genetic information encoded in DNA sequences which may evolve by local evolutionary events, that is point mutations. Each node is specialized just for one of these evolutionary operations. Furthermore, the data in each node is organized in the form of multisets of words (each word appears in an arbitrarily large number of copies), and all the copies are processed in parallel such that all the possible events that can take place do actually take place. Obviously, the computational process just described is not exactly an evolutionary process in the Darwinian sense. But the rewriting operations we have considered might be interpreted as mutations and the filtering process might be viewed as a selection process. Recombination is missing but it was asserted that evolutionary and functional relationships between genes can be captured by taking only local mutations into consideration. It is clear that filters associated with each node allow a strong control of the computation. Indeed, every node has an input and output filter; two nodes can exchange data if it passes the output filter of the sender and the input filter of the receiver. Moreover, if some data is sent out by some node and not able to enter any node, then it is lost. In this paper we simplify the ANSP model considered in by moving the filters from the nodes to the edges. Each edge is viewed as a two-way channel such that the input and output filters coincide. Clearly, the possibility of controlling the computation in such networks seems to be diminished. For instance, there is no possibility to loose data during the communication steps. In spite of this and of the fact that splicing is not a powerful operation (remember that splicing systems generates only regular languages) we prove here that these devices are computationally complete. As a consequence, we propose characterizations of two complexity classes, namely NP and PSPACE, in terms of accepting networks of restricted splicing processors with filtered connections. We proposed a uniform linear time solution to SAT based on ANSPFCs with linearly bounded resources. This solution should be understood correctly: we do not solve SAT in linear time and space. Since any word and auxiliary word appears in an arbitrarily large number of copies, one can generate in linear time, by parallelism and communication, an exponential number of words each of them having an exponential number of copies. However, this does not seem to be a major drawback since by PCR (Polymerase Chain Reaction) one can generate an exponential number of identical DNA molecules in a linear number of reactions. It is worth mentioning that the ANSPFC constructed above remains unchanged for any instance with the same number of variables. Therefore, the solution is uniform in the sense that the network, excepting the input and output nodes, may be viewed as a program according to the number of variables, we choose the filters, the splicing words and the rules, then we assign all possible values to the variables, and compute the formula.We proved that ANSP are computationally complete. Do the ANSPFC remain still computationally complete? If this is not the case, what other problems can be eficiently solved by these ANSPFCs? Moreover, the complexity class NP is exactly the class of all languages decided by ANSP in polynomial time. Can NP be characterized in a similar way with ANSPFCs?
Resumo:
"UIUC-ENG-R-75-2539."