932 resultados para Trophic cascades
Resumo:
Recently argued that observed positive relationships between dingoes and small mammals were a result of top-down processes whereby lethal dingo control reduced dingoes and increased mesopredators and herbivores, which then suppressed small mammals. Here, I show that the prerequisite negative effects of dingo control on dingoes were not shown, and that the same positive relationships observed may simply represent well-known bottom-up processes whereby more generalist predators are found in places with more of their preferred prey. Identification of top-predator controlinduced trophic cascades first requires demonstration of some actual effect of control on predators, typically possible only through manipulative experiments with the ability to identify cause and effect.
Resumo:
In lake ecosystems, both fish and invertebrate predators have dramatic effects on their prey communities. Fish predation selects large cladocerans while invertebrate predators prefer prey of smaller size. Since invertebrate predators are the preferred food items for fish, their occurrence at high densities is often connected with the absence or low number of fish. It is generally believed that invertebrate predators can play a significant role only if the density of planktivorous fish is low. However, in eutrophic clay-turbid Lake Hiidenvesi (southern Finland), a dense population of predatory Chaoborus flavicans larvae coexists with an abundant fish population. The population covers the stratifying area of the lake and attains a maximum population density of 23000 ind. m-2. This thesis aims to clarify the effects of Chaoborus flavicans on the zooplankton community and the environmental factors facilitating the coexistence of fish and invertebrate predators. In the stratifying area of Lake Hiidenvesi, the seasonal succession of cladocerans was exceptional. The spring biomass peak of cladocerans was missing and the highest biomass occurred in midsummer. In early summer, the consumption rate by chaoborids clearly exceeded the production rate of cladocerans and each year the biomass peak of cladocerans coincided with the minimum chaoborid density. In contrast, consumption by fish was very low and each study year cladocerans attained maximum biomass simultaneously with the highest consumption by smelt (Osmerus eperlanus). The results indicated that Chaoborus flavicans was the main predator of cladocerans in the stratifying area of Lake Hiidenvesi. The clay turbidity strongly contributed to the coexistence of chaoborids and smelt at high densities. Turbidity exceeding 30 NTU combined with light intensity below 0.1 μE m-2 s-1provides an efficient daytime refuge for chaoborids, but turbidity alone is not an adequate refuge unless combined with low light intensity. In the non-stratifying shallow basins of Lake Hiidenvesi, light intensity exceeds this level during summer days at the bottom of the lake, preventing Chaoborus forming a dense population in the shallow parts of the lake. Chaoborus can be successful particularly in deep, clay-turbid lakes where they can remain high in the water column close to their epilimnetic prey. Suspended clay alters the trophic interactions by weakening the link between fish and Chaoborus, which in turn strengthens the effect of Chaoborus predation on crustacean zooplankton. Since food web management largely relies on manipulations of fish stocks and the cascading effects of such actions, the validity of the method in deep clay-turbid lakes may be questioned.
Resumo:
We manipulated the diversity of top predators in a three trophic level marine food web. The food web included four top benthic marine fish predators (black goby, rock goby, sea scorpion and shore rockling), an intermediate trophic level of small fish, and a lower trophic level of benthic invertebrates. We kept predator density constant and monitored the response of the lower trophic levels. As top predator diversity increased, secondary production increased. We also observed that in the presence of the manipulated fish predators, the density of small gobiid fish (intermediate consumers) was suppressed, releasing certain groups of benthic invertebrates (caprellid amphipods, copepods, nematodes and spirorbid worms) from heavy intermediate predation pressure. We attribute the mechanism responsible for this trophic cascade to a trait-mediated indirect interaction, with the small gobiid fish changing their use of space in response to altered predator diversity. In the absence of top fish predators, a full-blown trophic cascade occurs. Therefore the diversity of predators reduces the likelihood of trophic cascades occurring and hence provides insurance against the loss of an important ecosystem function (i.e. secondary production).
Resumo:
Marine ecosystems and their associated populations are increasingly at risk from the cumulative impacts of many anthropogenic threats that increase the likelihood of species extinction and altered community dynamics. In response, marine reserves can be used to protect exploited species and conserve biodiversity. The increased abundance of predatory species in marine reserves may cause indirect effects along chains of multi-trophic interactions. These trophic cascades can arise through direct predation, density-mediated indirect interactions (DMIIs), or indirect behavioural effects, termed trait-mediated indirect interactions (TMIIs). The extent of algal cover and the abundance of 4 primary consumers were determined in Lough Hyne, which was designated Europe's first marine nature reserve in 1981. The primary consumers were the sea urchin Paracentrotus lividus, the topshell Gibbula cineraria, the oyster Anomia ephippium, and the scallop Chlamys varia. The abundances of 3 starfish species (Marthasterias glacialis, Asterias rubens, and Asterina gibbosa) were also determined, as were 2 potential crustacean predators, Necora puber and Carcinus maenas. These data were compared with historical data from a 1962 (prey) and a 1963 (predator) survey to determine the nature of community interactions over adjacent trophic levels. The present study reveals a breakdown in population structure of the 4 surveyed prey species. Marine reserve designation has led to an increase in predatory crabs and M. glacialis, a subsequent decrease in primary consumers, especially the herbivore P. lividus, and an increase in macroalgal cover which is indicative of a trophic cascade. The study shows that establishing a Marine Reserve does not guarantee that conservation benefits will be distributed equally.
Resumo:
Preserving large tracts of natural habitats is essential to maintain biodiversity. Nevertheless, even large areas may still suffer from less visible impacts such as loss of ecological processes. Because mapping ecological processes over large scales is not practical, an alternative is to map surrogate species that are key for those processes. In this study, we chose four species of Neotropical large mammals (the largest apex predator: jaguar - Panthera onca; the largest herbivore: tapir - Tapirus terrestris; the largest seed predator: white-lipped peccary - Tayassu pecari; and the largest arboreal seed disperser: muriqui - Brachyteles spp.) in an ecosystem with an old history of human impact (the Atlantic Forest) to test whether areas with native forest still harbor ecological processes that may guarantee long-term ecosystem maintenance. We gathered 94 locations with recent presence of the four species to map current ranges and model suitable areas. Our results reveal that 96% of the remaining Atlantic Forest is depleted of at least one of the four surrogate species and 88% is completely depleted of all four surrogate species. We also found that only 16% is still environmentally suitable for all four, and 55% is completely unsuitable to all four of them. Our study highlights the importance of looking beyond land cover to fully depict intactness of natural areas, and suggests that ecosystems with a long history of human impact (such as the Atlantic Forest) may be suffering from ecological impacts not seen at a first glance. © 2013 Elsevier Ltd.
Resumo:
The strength of top-down indirect effects of carnivores on plants (trophic cascades) varies greatly and may depend on the identity of the intermediate (herbivore) species. If the effect strength is linked to functional traits of the herbivores then this would allow for more general predictions. Due to the generally sub-lethal effects of herbivory in terrestrial systems, trophic cascades manifest themselves in the first instance in the fitness of individual plants, affecting both their numerical and genetic contributions to the population. We directly compare the indirect predator effects on growth and reproductive output of individual Vicia faba plants mediated by the presence of two aphid species: Acyrtosiphon pisum is characterised by a boom and bust strategy whereby colonies grow fast and overexploit their host plant individual while Megoura viciae appear to follow a more prudent strategy that avoids over-exploitation and death of the host plant.Plants in the field were infested with A. pisum, M. viciae or both and half the plants were protected from predators. Exposure to predators had a strong impact on the biomass of individual plants and the strength of this effect differed significantly between the different herbivore treatments.A. pisum had a greater direct impact on plants and this was coupled with a significantly stronger indirect predator effect on plant biomass.Although the direct impact of predators was strongest on M. viciae, this was not transmitted to the plant level, indicating that the predator-prey interactions strength is not as important as the plant-herbivore link for the magnitude of the indirect predator impact. At the individual plant level, the indirect predator effect was purely due to consumptive effects on herbivore densities with no evidence for increased herbivore dispersal in response to presence of predators. The nature of plant-herbivore interactions is the key to terrestrial trophic cascade strength. The two herbivores that we compared were similar in feeding mode and body size but differed their way how they exploit host plants, which was the important trait explaining the strength of the trophic cascade.
Resumo:
1. Apex predators are often assumed to be dietary generalists and, by feeding on prey from multiple basal nutrient sources, serve to couple discrete food webs. But there is increasing evidence that individual level dietary specialization may be common in many species, and this has not been investigated for many marine apex predators. 2. Because of their position at or near the top of many marine food webs, and the possibility that they can affect populations of their prey and induce trophic cascades, it is important to understand patterns of dietary specialization in shark populations. 3. Stable isotope values from body tissues with different turnover rates were used to quantify patterns of individual specialization in two species of ‘generalist’ sharks (bull sharks, Carcharhinus leucas, and tiger sharks, Galeocerdo cuvier). 4. Despite wide population-level isotopic niche breadths in both species, isotopic values of individual tiger sharks varied across tissues with different turnover rates. The population niche breadth was explained mostly by variation within individuals suggesting tiger sharks are true generalists. In contrast, isotope values of individual bull sharks were stable through time and their wide population level niche breadth was explained by variation among specialist individuals. 5. Relative resource abundance and spatial variation in food-predation risk tradeoffs may explain the differences in patterns of specialization between shark species. 6. The differences in individual dietary specialization between tiger sharks and bull sharks results in different functional roles in coupling or compartmentalizing distinct food webs. 7. Individual specialization may be an important feature of trophic dynamics of highly mobile marine top predators and should be explicitly considered in studies of marine food webs and the ecological role of top predators.
Resumo:
There is growing interest in the role that apex predators play in shaping terrestrial ecosystems and maintaining trophic cascades. In line with the mesopredator release hypothesis, Australian dingoes (Canis lupus dingo and hybrids) are assumed by many to regulate the abundance of invasive mesopredators, such as red foxes Vulpes vulpes and feral cats Felis catus, thereby providing indirect benefits to various threatened vertebrates. Several recent papers have claimed to provide evidence for the biodiversity benefits of dingoes in this way. Nevertheless, in this paper we highlight several critical weaknesses in the methodological approaches used in many of these reports, including lack of consideration for seasonal and habitat differences in activity, the complication of simple track-based indices by incorporating difficult-to-meet assumptions, and a reduction in sensitivity for assessing populations by using binary measures rather than potentially continuous measures. Of the 20 studies reviewed, 15 of them (75%) contained serious methodological flaws, which may partly explain the inconclusive nature of the literature nvestigating interactions between invasive Australian predators. We therefore assert that most of the “growing body of evidence” for mesopredator release is merely an inconclusive growing body of literature only. We encourage those interested in studying the ecological roles of dingoes relative to invasive mesopredators and native prey species to account for the factors we identify, and caution the value of studies that have not done so.
Resumo:
The large size, high trophic level and wide distribution of Hexanchiformes (cow and frilled sharks) should position this order as important apex predators in coastal and deep-water ecosystems. This review synthesizes available information on Hexanchiformes, including information not yet published, with the purpose of evaluating their conservation status and assessing their ecological roles in the dynamics of marine ecosystems. Comprising six species, this group has a wide global distribution, with members occurring from shallow coastal areas to depths of c. 2500 m. The limited information available on their reproductive biology suggests that they could be vulnerable to overexploitation (e.g. small litter sizes for most species and suspected long gestation periods). Most of the fishing pressure exerted on Hexanchiformes is in the form of commercial by-catch or recreational fishing. Comprehensive stock and impact assessments are unavailable for most species in most regions due to limited information on life history and catch and abundance time series. When hexanchiform species have been commercially harvested, however, they have been unable to sustain targeted fisheries for long periods. The potentially high vulnerability to intense fishing pressure warrants a conservative exploitation of this order until thorough quantitative assessments are conducted. At least some species have been shown to be significant apex predators in the systems they inhabit. Should Hexanchiformes be removed from coastal and deep-water systems, the lack of sympatric shark species that share the same resources suggests no other species would be capable of fulfilling their apex predator role in the short term. This has potential ecosystem consequences such as meso-predator release or trophic cascades. This review proposes some hypotheses on the ecology of Hexanchiformes and their role in ecosystem dynamics, highlighting the areas where critical information is required to stimulate research directions.
Resumo:
Introduction Many prey species around the world are suffering declines due to a variety of interacting causes such as land use change, climate change, invasive species and novel disease. Recent studies on the ecological roles of top-predators have suggested that lethal top-predator control by humans (typically undertaken to protect livestock or managed game from predation) is an indirect additional cause of prey declines through trophic cascade effects. Such studies have prompted calls to prohibit lethal top-predator control with the expectation that doing so will result in widespread benefits for biodiversity at all trophic levels. However, applied experiments investigating in situ responses of prey populations to contemporary top-predator management practices are few and none have previously been conducted on the eclectic suite of native and exotic mammalian, reptilian, avian and amphibian predator and prey taxa we simultaneously assess. We conducted a series of landscape-scale, multi-year, manipulative experiments at nine sites spanning five ecosystem types across the Australian continental rangelands to investigate the responses of sympatric prey populations to contemporary poison-baiting programs intended to control top-predators (dingoes) for livestock protection. Results Prey populations were almost always in similar or greater abundances in baited areas. Short-term prey responses to baiting were seldom apparent. Longer-term prey population trends fluctuated independently of baiting for every prey species at all sites, and divergence or convergence of prey population trends occurred rarely. Top-predator population trends fluctuated independently of baiting in all cases, and never did diverge or converge. Mesopredator population trends likewise fluctuated independently of baiting in almost all cases, but did diverge or converge in a few instances. Conclusions These results demonstrate that Australian populations of prey fauna at lower trophic levels are typically unaffected by top-predator control because top-predator populations are not substantially affected by contemporary control practices, thus averting a trophic cascade. We conclude that alteration of current top-predator management practices is probably unnecessary for enhancing fauna recovery in the Australian rangelands. More generally, our results suggest that theoretical and observational studies advancing the idea that lethal control of top-predators induces trophic cascades may not be as universal as previously supposed.
Resumo:
I. Scientific Issues Posed by OECOS II. Participant Contributions to the OECOS Workshop A. ASPECTS OF PHYTOPLANKTON ECOLOGY IN THE SUBARCTIC PACIFIC Microbial community compositions by Karen E. Selph Subarctic Pacific lower trophic interactions: Production-based grazing rates and grazing-corrected production rates by Nicholas Welschmeyer Phytoplankton bloom dynamics and their physiological status in the western subarctic Pacific by Ken Furuya Temporal and spatial variability of phytoplankton biomass and productivity in the northwestern Pacific by Sei-ichi Saitoh, Suguru Okamoto, Hiroki Takemura and Kosei Sasaoka The use of molecular indicators of phytoplankton iron limitation by Deana Erdner B. IRON CONCENTRATION AND CHEMICAL SPECIATION Iron measurements during OECOS by Zanna Chase and Jay Cullen 25 The measurement of iron, nutrients and other chemical components in the northwestern North Pacific Ocean by Kenshi Kuma The measurement of iron, nutrients and other chemical components in the northwestern North Pacific Ocean by Kenshi Kuma C. PHYSICAL OCEANOGRAPHY, FINE-SCALE DISTRIBUTION PATTERNS AND AUTONOMOUS DRIFTERS The use of drifters in Lagrangian experiments: Positives, negatives and what can really be measured by Peter Strutton The interaction between plankton distribution patterns and vertical and horizontal physical processes in the eastern subarctic North Pacific by Timothy J. Cowles D. MICROZOOPLANKTON Microzooplankton processes in oceanic waters of the eastern subarctic Pacific: Project OECOS by Suzanne Strom Functional role of microzooplankton in the pelagic marine ecosystem during phytoplankton blooms in the western subarctic Pacific by Takashi Ota and Akiyoshi Shinada E. MESOZOOPLANKTON Vertical zonation of mesozooplankton, and its variability in response to food availability, density stratification, and turbulence by David L. Mackas and Moira Galbraith Marine ecosystem characteristics and seasonal abundance of dominant calanoid copepods in the Oyashio region by Atsushi Yamaguchi, Tsutomu Ikeda and Naonobu Shiga OECOS: Proposed mesozooplankton research in the Oyashio region, western subarctic Pacific by Tsutomu Ikeda Some background on Neocalanus feeding by Michael Dagg Size and growth of interzonally migrating copepods by Charles B. Miller Growth of large interzonal migrating copepods by Toru Kobari F. MODELING Ecosystem and population dynamics modeling by Harold P. Batchelder III. Reports from Workshop Breakout Groups A. PHYSICAL AND CHEMICAL ASPECTS WITH EMPHASIS ON IRON AND IRON SPECIATION B. PHYTOPLANKTON/MICROZOOPLANKTON STUDIES C. MESOZOOPLANKTON STUDIES IV. Issues arising during the workshop A. PHYTOPLANKTON STOCK VARIATIONS IN HNLC SYSTEMS AND TROPHIC CASCADES IN THE NANO AND MICRO REGIMES B. DIFFERENCES BETWEEN EAST AND WEST IN SITE SELECTION FOR OECOS TIME SERIES C. TIMING OF OECOS EXPEDITIONS D. CHARACTERIZATION OF PHYSICAL OCEANOGRAPHY V. Concluding Remarks VI. References (109 page document)
Resumo:
Global biodiversity is eroding at an alarming rate, through a combination of anthropogenic disturbance and environmental change. Ecological communities are bewildering in their complexity. Experimental ecologists strive to understand the mechanisms that drive the stability and structure of these complex communities in a bid to inform nature conservation and management. Two fields of research have had high profile success at developing theories related to these stabilising structures and testing them through controlled experimentation. Biodiversity-ecosystem functioning (BEF) research has explored the likely consequences of biodiversity loss on the functioning of natural systems and the provision of important ecosystem services. Empirical tests of BEF theory often consist of simplified laboratory and field experiments, carried out on subsets of ecological communities. Such experiments often overlook key information relating to patterns of interactions, important relationships, and fundamental ecosystem properties. The study of multi-species predator-prey interactions has also contributed much to our understanding of how complex systems are structured, particularly through the importance of indirect effects and predator suppression of prey populations. A growing number of studies describe these complex interactions in detailed food webs, which encompass all the interactions in a community. This has led to recent calls for an integration of BEF research with the comprehensive study of food web properties and patterns, to help elucidate the mechanisms that allow complex communities to persist in nature. This thesis adopts such an approach, through experimentation at Lough Hyne marine reserve, in southwest Ireland. Complex communities were allowed to develop naturally in exclusion cages, with only the diversity of top trophic levels controlled. Species removals were carried out and the resulting changes to predator-prey interactions, ecosystem functioning, food web properties, and stability were studied in detail. The findings of these experiments contribute greatly to our understanding of the stability and structure of complex natural communities.
Resumo:
Global ocean biogeochemistry models currently employed in climate change projections use highly simplified representations of pelagic food webs. These food webs do not necessarily include critical pathways by which ecosystems interact with ocean biogeochemistry and climate. Here we present a global biogeochemical model which incorporates ecosystem dynamics based on the representation of ten plankton functional types (PFTs); six types of phytoplankton, three types of zooplankton, and heterotrophic bacteria. We improved the representation of zooplankton dynamics in our model through (a) the explicit inclusion of large, slow-growing zooplankton, and (b) the introduction of trophic cascades among the three zooplankton types. We use the model to quantitatively assess the relative roles of iron vs. grazing in determining phytoplankton biomass in the Southern Ocean High Nutrient Low Chlorophyll (HNLC) region during summer. When model simulations do not represent crustacean macrozooplankton grazing, they systematically overestimate Southern Ocean chlorophyll biomass during the summer, even when there was no iron deposition from dust. When model simulations included the developments of the zooplankton component, the simulation of phytoplankton biomass improved and the high chlorophyll summer bias in the Southern Ocean HNLC region largely disappeared. Our model results suggest that the observed low phytoplankton biomass in the Southern Ocean during summer is primarily explained by the dynamics of the Southern Ocean zooplankton community rather than iron limitation. This result has implications for the representation of global biogeochemical cycles in models as zooplankton faecal pellets sink rapidly and partly control the carbon export to the intermediate and deep ocean.
Resumo:
We assessed ten trophodynamic indicators of ecosystem status for their sensitivity and specificity to fishing management using a size-resolved multispecies fish community model. The responses of indicators to fishing depended on effort and the size selectivity (sigmoid or Gaussian) of fishing mortality. The highest specificity against sigmoid (trawl-like) size selection was seen from inverse fishing pressure and the large fish indicator, but for Gaussian size selection, the large species indicator was most specific. Biomass, mean trophic level of the community and of the catch, and fishing in balance had the lowest specificity against both size selectivities. Length-based indicators weighted by biomass, rather than abundance, were more sensitive and specific to fishing pressure. Most indicators showed a greater response to sigmoid than Gaussian size selection. Indicators were generally more sensitive at low levels of effort because of nonlinear sensitivity in trophic cascades to fishing mortality. No single indicator emerged as superior in all respects, so given available data, multiple complementary indicators are recommended for community monitoring in the ecosystem approach to fisheries management.
Resumo:
A dynamic food-web model of more than 1000 species was used to quantify the recovery trajectory of marine community size-structure under different hypothetical fishing regimes, using the Northeast Atlantic as an example. Size-structure was summarised by four indicators: the Large Fish Indicator (LFI), the Large Species Indicator (LSI), the biomass-weighted mean maximum length of fish species (EMBED Equation.3) and the biomass-weighted mean maturation length of fish species (EMBED Equation.3). Time-series of these indicators recorded recovery following release from fishing with various size-selectivities, intensities and durations. In model simulations, fishing-induced trophic cascades were observed to distort fish community size-structure, but these did not have a large influence on recovery level or duration as measured by the four indicators. However, simulations showed that local extinctions of large fish species increased in number with both fishing intensity and duration, and could strongly limit the recovery level. Recovery of fish community size-structure to near equilibrium frequently took multiple decades in simulations; these long transient periods suggest that management interventions for size-structure recovery may require much longer than previously thought. Our results demonstrate the need for community-level modelling to set realistic targets for management of community size-structure.