908 resultados para Trade in CO2 emissions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines the asymmetry of changes in CO<inf>2inf> emissions over business cycle recessions and expansions using yearly data from 1949 and monthly data from 1973 for the United States (US). In addition, decomposition analysis is applied to investigate the relative roles of various proximate contributing factors to observed changes in total and per capita CO<inf>2inf> emissions and emissions intensity, over business cycle phases. The results suggest, inter alia, that aggregate emissions and emissions intensity reduce much faster in contractions than they increase in expansions. In addition, unlike the three previous expansions, in the most recent post-GFC US expansion, emissions per capita have continued to decline, and at a rate very similar to the rate of reduction in preceding contractions. This suggests the real possibility that the most recent contraction may have had an ongoing impact on the path of per capita emissions well beyond the immediate impact experienced during the contraction itself.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes in energy-related CO2 emissions aggregate intensity, total CO2 emissions and per-capita CO2 emissions in Australia are decomposed by using a Logarithmic Mean Divisia Index (LMDI) method for the period 1978-2010. Results indicate improvements in energy efficiency played a dominant role in the measured 17% reduction in CO2 emissions aggregate intensity in Australia over the period. Structural changes in the economy, such as changes in the relative importance of the services sector vis-à-vis manufacturing, have also played a major role in achieving this outcome. Results also suggest that, without these mitigating factors, income per capita and population effects could well have produced an increase in total emissions of more than 50% higher than actually occurred over the period. Perhaps most starkly, the results indicate that, without these mitigating factors, the growth in CO2 emissions per capita could have been over 150% higher than actually observed. Notwithstanding this, the study suggests that, for Australia to meet its Copenhagen commitment, the relative average per annum effectiveness of these mitigating factors during 2010-2020 probably needs to be almost three times what it was in the 2005-2010 period-a very daunting challenge indeed for Australia's policymakers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cement industry ranks 2nd in energy consumption among the industries in India. It is one of the major emitter of CO2, due to combustion of fossil fuel and calcination process. As the huge amount of CO2 emissions cause severe environment problems, the efficient and effective utilization of energy is a major concern in Indian cement industry. The main objective of the research work is to assess the energy cosumption and energy conservation of the Indian cement industry and to predict future trends in cement production and reduction of CO2 emissions. In order to achieve this objective, a detailed energy and exergy analysis of a typical cement plant in Kerala was carried out. The data on fuel usage, electricity consumption, amount of clinker and cement production were also collected from a few selected cement industries in India for the period 2001 - 2010 and the CO2 emissions were estimated. A complete decomposition method was used for the analysis of change in CO2 emissions during the period 2001 - 2010 by categorising the cement industries according to the specific thermal energy consumption. A basic forecasting model for the cement production trend was developed by using the system dynamic approach and the model was validated with the data collected from the selected cement industries. The cement production and CO2 emissions from the industries were also predicted with the base year as 2010. The sensitivity analysis of the forecasting model was conducted and found satisfactory. The model was then modified for the total cement production in India to predict the cement production and CO2 emissions for the next 21 years under three different scenarios. The parmeters that influence CO2 emissions like population and GDP growth rate, demand of cement and its production, clinker consumption and energy utilization are incorporated in these scenarios. The existing growth rate of the population and cement production in the year 2010 were used in the baseline scenario. In the scenario-1 (S1) the growth rate of population was assumed to be gradually decreasing and finally reach zero by the year 2030, while in scenario-2 (S2) a faster decline in the growth rate was assumed such that zero growth rate is achieved in the year 2020. The mitigation strategiesfor the reduction of CO2 emissions from the cement production were identified and analyzed in the energy management scenarioThe energy and exergy analysis of the raw mill of the cement plant revealed that the exergy utilization was worse than energy utilization. The energy analysis of the kiln system showed that around 38% of heat energy is wasted through exhaust gases of the preheater and cooler of the kiln sysetm. This could be recovered by the waste heat recovery system. A secondary insulation shell was also recommended for the kiln in the plant in order to prevent heat loss and enhance the efficiency of the plant. The decomposition analysis of the change in CO2 emissions during 2001- 2010 showed that the activity effect was the main factor for CO2 emissions for the cement industries since it is directly dependent on economic growth of the country. The forecasting model showed that 15.22% and 29.44% of CO2 emissions reduction can be achieved by the year 2030 in scenario- (S1) and scenario-2 (S2) respectively. In analysing the energy management scenario, it was assumed that 25% of electrical energy supply to the cement plants is replaced by renewable energy. The analysis revealed that the recovery of waste heat and the use of renewable energy could lead to decline in CO2 emissions 7.1% for baseline scenario, 10.9 % in scenario-1 (S1) and 11.16% in scenario-2 (S2) in 2030. The combined scenario considering population stabilization by the year 2020, 25% of contribution from renewable energy sources of the cement industry and 38% thermal energy from the waste heat streams shows that CO2 emissions from Indian cement industry could be reduced by nearly 37% in the year 2030. This would reduce a substantial level of greenhouse gas load to the environment. The cement industry will remain one of the critical sectors for India to meet its CO2 emissions reduction target. India’s cement production will continue to grow in the near future due to its GDP growth. The control of population, improvement in plant efficiency and use of renewable energy are the important options for the mitigation of CO2 emissions from Indian cement industries

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The proper management of agricultural crop residues could produce benefits in a warmer, more drought-prone world. Field experiments were conducted in sugarcane production areas in the Southern Brazil to assess the influence of crop residues on the soil surface in short-term CO2 emissions. The study was carried out over a period of 50 days after establishing 6 plots with and without crop residues applied to the soil surface. The effects of sugarcane residues on CO2 emissions were immediate; the emissions from residue-covered plots with equivalent densities of 3 (D50) and 6 (D100) t ha-1 (dry mass) were less than those from non-covered plots (D0). Additionally, the covered fields had lower soil temperatures and higher soil moisture for most of the studied days, especially during the periods of drought. Total emissions were as high as 553.62 ± 47.20 g CO2 m-2, and as low as 384.69 ± 31.69 g CO2 m-2 in non-covered (D0) and covered plot with an equivalent density of 3 t ha-1 (D50), respectively. Our results indicate a significant reduction in CO2 emissions, indicating conservation of soil carbon over the short-term period following the application of sugarcane residues to the soil surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we apply the inter-regional input–output model to explain the relationship between China’s inter-regional spillover of CO2 emissions and domestic supply chains for 2002 and 2007. Based on this model, we propose alternative indicators such as the trade in CO2 emissions, CO2 emissions in trade, regional trade balances, and comparative advantage of CO2 emissions. The empirical results not only reveal the nature and significance of inter-regional environmental spillover within China’s domestic regions but also demonstrate how CO2 emissions are created and distributed across regions via domestic production networks. The main finding shows that a region’s CO2 emissions depend on not only its intra-regional production technique, energy use efficiency but also its position and participation degree in domestic and global supply chains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The addition of hydrogen to natural gas could be a short-term alternative to today’s fossil fuels, as greenhouse gas emissions may be reduced. The aim of this study is to evaluate the emissions and performance of a spark ignition engine fuelled by pure natural gas, pure hydrogen, and different blends of hydrogen and natural gas (HCNG). Increasing the hydrogen fraction leads to variations in cylinder pressure and CO2 emissions. In this study, a combustion model based on thermodynamic equations is used, considering separate zones for burned and unburned gases. The results show that the maximum cylinder pressure rises as the fraction of hydrogen in the blend increases. The presence of hydrogen in the blend leads to a decrease in CO2 emissions. Due to the properties of hydrogen, leaner fuel–air mixtures can be used along with the appropriate spark timing, leading to an improvement in engine emissions with no loss of performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines the relationships among per capita CO2 emissions, per capita GDP and international trade based on panel data sets spanning the period 1960-2008: one for 150 countries and the others for sub-samples comprising OECD and Non-OECD economies. We apply panel unit root and cointegration tests, and estimate a panel error correction model. The results from the error correction model suggest that there are long-term relationships between the variables for the whole sample and for Non-OECD countries. Finally, Granger causality tests show that there is bi-directional short-term causality between per capita GDP and international trade for the whole sample and between per capita GDP and CO2 emissions for OECD countries

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper integrates two lines of research into a unified conceptual framework: trade in global value chains and embodied emissions. This allows both value added and emissions to be systematically traced at the country, sector, and bilateral levels through various production network routes. By combining value-added and emissions accounting in a consistent way, the potential environmental cost (amount of emissions per unit of value added) along global value chains can be estimated. Using this unified accounting method, we trace CO2 emissions in the global production and trade network among 41 economies in 35 sectors from 1995 to 2009, basing our calculations on the World Input–Output Database, and show how they help us to better understand the impact of cross-country production sharing on the environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study adopts the perspective of demand spillovers to provide new insights regarding Chinese domestic-regions' production position in global value chains and their associated CO2 emissions. To this end, we constructed a new type of World Input-Output Database in which China's domestic interregional input-output table for 2007 is endogenously embedded. Then, the pattern of China's regional demand spillovers across both domestic regions and countries are revealed by employing this new database. These results were further connected to endowments theory, which help to make sense of the empirical results. It is found that China's regions locate relatively upstream in GVCs, and had CO2 emissions in net exports, which were entirely predicted by the environmental extended HOV model. Our study points to micro policy instruments to combat climate change, for example, the tax reform for energy inputs that helps to change the production pattern thus has impact on trade pattern and so forth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Grandfathering is currently the main principle for the initial allocation of tradable CO2 emission rights under the European cap-and-trade scheme. Furthermore, political feasibility often requires non-restrictive emission caps. Grandfathering under lax cap is unjust, biased and brings polluters unintended windfall profits. Still, in any post-Kyoto international CO2 regime, lax caps may be critical in coaxing binding emission targets out of more countries, especially those in the less-developed world. This paper argues that there is a certain quantity of emission rights between the initial and the optimal emissions, the grandfathering of which brings polluters zero windfall profits or zero windfall losses. Our theoretical concept of zero-windfall grandfathering can be used to demonstrate the windfall profits that have emerged at company level during the first EU trading period. It might thus encourage governments to embrace auctioning, and to combine it with grandfathering as a legitimate tool in the initial allocation of emission rights in later trading regimes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Irrigation is known to stimulate soil microbial carbon and nitrogen turnover and potentially the emissions of nitrous oxide (N2O) and carbon dioxide (CO2). We conducted a study to evaluate the effect of three different irrigation intensities on soil N2O and CO2 fluxes and to determine if irrigation management can be used to mitigate N2O emissions from irrigated cotton on black vertisols in South-Eastern Queensland, Australia. Fluxes were measured over the entire 2009/2010 cotton growing season with a fully automated chamber system that measured emissions on a sub-daily basis. Irrigation intensity had a significant effect on CO2 emission. More frequent irrigation stimulated soil respiration and seasonal CO2 fluxes ranged from 2.7 to 4.1 Mg-C ha−1 for the treatments with the lowest and highest irrigation frequency, respectively. N2O emission happened episodic with highest emissions when heavy rainfall or irrigation coincided with elevated soil mineral N levels and seasonal emissions ranged from 0.80 to 1.07 kg N2O-N ha−1 for the different treatments. Emission factors (EF = proportion of N fertilizer emitted as N2O) over the cotton cropping season, uncorrected for background emissions, ranged from 0.40 to 0.53 % of total N applied for the different treatments. There was no significant effect of the different irrigation treatments on soil N2O fluxes because highest emission happened in all treatments following heavy rainfall caused by a series of summer thunderstorms which overrode the effect of the irrigation treatment. However, higher irrigation intensity increased the cotton yield and therefore reduced the N2O intensity (N2O emission per lint yield) of this cropping system. Our data suggest that there is only limited scope to reduce absolute N2O emissions by different irrigation intensities in irrigated cotton systems with summer dominated rainfall. However, the significant impact of the irrigation treatments on the N2O intensity clearly shows that irrigation can easily be used to optimize the N2O intensity of such a system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article measures Japanese prefectures' productivity from 1991 to 2002, taking CO2 emissions into consideration, and examines the factors that impact on productivity. We use the data envelopment analysis and measure the Luenberger productivity indicator, incorporating CO2 emissions in the analysis. Our results show that productivity was decreasing during the period of investigation. According to the results of the generalized method of moment estimation, the operations rate, the share of the energy intensive industries and social capital significantly impact on productivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigates the relationship between per capita carbon dioxide (CO2) emissions and per capita GDP in Australia, while controlling for technological state as measured by multifactor productivity and export of black coal. Although technological progress seems to play a critical role in achieving long term goals of CO2 reduction and economic growth, empirical studies have often considered time trend to proxy technological change. However, as discoveries and diffusion of new technologies may not progress smoothly with time, the assumption of a deterministic technological progress may be incorrect in the long run. The use of multifactor productivity as a measure of technological state, therefore, overcomes the limitations and provides practical policy directions. This study uses recently developed bound-testing approach, which is complemented by Johansen- Juselius maximum likelihood approach and a reasonably large sample size to investigate the cointegration relationship. Both of the techniques suggest that cointegration relationship exists among the variables. The long-run and short-run coefficients of CO2 emissions function is estimated using ARDL approach. The empirical findings in the study show evidence of the existence of Environmental Kuznets Curve type relationship for per capita CO2 emissions in the Australian context. The technology as measured by the multifactor productivity, however, is not found as an influencing variable in emissionsincome trajectory.