994 resultados para Timber frame structures
Resumo:
Timber connections represent the crucial part of a timber structure and a great variability exists in terms of types of connections and mechanisms. Taking as case study the widespread traditional timber frame structures, in particular the Portuguese Pombalino buildings, one of the most common timber connection is the half-lap joint. Connections play a major role in the overall behaviour of a structure, particularly when assessing their seismic response, since damage is concentrated at the connections. For this reason, an experimental campaign was designed and distinct types of tests were carried out on traditional half-lap joints to assess their in-plane response. In particular, pull-out and in-plane cyclic tests were carried out on real scale unreinforced connections. Subsequently, the connections were retrofitted, using strengthening techniques such as self-tapping screws, steel plates and GFRP sheets. The tests chosen were meant to capture the hysteretic behaviour and dissipative capacity of the connections and characterise their response and, therefore, their influence on the seismic response of timber frame walls, particularly concerning their uplifting and rotation capacity, that could lead to rocking in the walls. In this paper, the results of the experimental campaign are presented in terms of hysteretic curves, dissipated energy and equivalent viscous damping ratio. Moreover, recommendations are provided on the most appropriate retrofitting solutions.
Resumo:
Given the fact that using timber frame structures has proven to improve the seismic behavior of vernacular architecture, as has been reported in past earthquakes in many countries, its preservation as a traditional earthquake resistant practice is important. This paper firstly intends to evaluate whether the use of timber frames as a traditional seismic resistant technique for vernacular architecture in the South of Portugal, traditionally a seismic region, is still active. Secondly, the city of Vila Real de Santo António was selected as a case study because it also followed a Pombaline development contemporary to the reconstruction of Lisbon. The plan included the provision of timber frame partition walls for some of the buildings and, thus, an overview of the type of constructions originally conceived is provided. Finally, the alterations done in the original constructions and the current state of the city center are described and the effect of these changes on the seismic vulnerability of the city is discussed.
Resumo:
Timber frame construction is characteristic of several historic city centres as well as of vernacular architecture in several countries around the world, either motivated by the availability of materials and construction traditions or by the need of reducing the seismic vulnerability of buildings, namely in south European countries, where this construction technique was adopted for seismic-resistance purposes. From past earthquakes, it has been seen that timber frame construction can be viewed as an interesting technology as it has exhibited a very reasonable behaviour when compared to other traditional construction techniques such as masonry walls. This chapter provides an overview of the main insights on the seismic performance of timber frame buildings from the evidences of past earthquakes and provides the main results of recent research focused on the in-plane cyclic behavior of timber frame walls with distinct geometrical configurations. Additionally, the main seismic performance indexes of timber frame walls, both unreinforced and retrofitted, are presented and discussed in detail.
Resumo:
Timber frame buildings are well known as an efficient seismic resistant structure and they are used worldwide. Moreover, they have been specifically adopted in codes and regulations during the XVIII and XIX centuries in the Mediterranean area. These structures generally consist of exterior masonry walls with timber elements embedded which tie the walls together and internal walls which have a timber frame with masonry infill and act as shearwalls. In order to preserve these structureswhich characterizemany cities in theworld it is important to better understand their behaviour under seismic actions. Furthermore, historic technologies could be used even in modern constructions to build seismic resistant buildings using more natural materials with lesser costs. Generally, different types of infill could be applied to timber frame walls depending on the country, among which brick masonry, rubble masonry, hay and mud. The focus of this paper is to study the seismic behaviour of the walls considering different types of infill, specifically: masonry infill, lath and plaster and timber frame with no infill. Static cyclic tests have been performed on unreinforced timber frame walls in order to study their seismic capacity in terms of strength, stiffness, ductility and energy dissipation. The tests showed how in the unreinforced condition, the infill is able to guarantee a greater stiffness, ductility and ultimate capacity of the wall.
Resumo:
The paper presented herein proposes a reliability-based framework for quantifying the structural robustness considering the occurrence of a major earthquake (mainshock) and subsequent cascading hazard events, such as aftershocks that are triggered by the mainshock. These events can significantly increase the probability of failure of buildings, especially for structures that are damaged during the mainshock. The application of the proposed framework is exemplified through three numerical case studies. The case studies correspond to three SAC steel moment frame buildings of 3-, 9-, and 20- stories, which were designed to pre-Northridge codes and standards. Twodimensional nonlinear finite element models of the buildings are developed using the Open System for Earthquake Engineering Simulation framework (OpenSees), using a finite-length plastic hinge beam model and a bilinear constitutive law with deterioration, and are subjected to multiple mainshock-aftershock seismic sequences. For the three buildings analyzed herein, it is shown that the structural reliability under a single seismic event can be significantly different from that under a sequence of seismic events. The reliability-based robustness indicator used shows that the structural robustness is influenced by the extent by which a structure can distribute damage.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Civil – Estruturas e Geotecnia
Resumo:
Timber frames are commonly adopted as a structural element in many countries with specific characteristics varying locally, in termsof geometry and materials.Their diffusion in Southern European countries is linked to their good seismic-resistant capacity, but only in the last decade interest has grown for this structural typology, and studies have been performed to better understand their behaviour. In this contribution, a brief state of the art on existing timber frame building typologies is presented, focusing on their seismic-resistant characteristics. Additionally, an overview of possible strengthening solutions, adopted both in practice, and tested experimentally are presented. Their performance when applied to walls and connections is also discussed.
Resumo:
Timber frame buildings are well known as an efficient seismic resistant structure popular all over the world not only due to their seismic performance, but also to their low cost and the strength they offer. These constructions still exist today and it is important to be able to preserve them, so a better knowledge on their behaviour is sought. Furthermore, historic technologies could be used even in modern constructions to build seismic resistant buildings using more natural materials with lesser costs. A great rehabilitation effort is being carried out on this type of buildings, as their neglect has led to decay or their change in use and alterations to the structure has led to the need to retrofit such buildings; only recently studies on their behaviour have become available and only a few of them address the issue of possible strengthening techniques for this kind of walls. In this scope, an innovative retrofitting technique (near surface mounted steel flat bars) is proposed and validated on traditional timber frame walls based on an extensive experimental program. The results of the static cyclic tests on distinct wall typologies retrofitted with the NSM technique are herein presented and discussed in detail. The main features on deformation, lateral stiffness, lateral resistance and seismic performance indexes are analysed
Resumo:
A numerical approach to simulate the behaviour of timber shear walls under both static and dynamic loading is proposed. Because the behaviour of timber shear walls hinges on the behaviour of the nail connections, the force-displacement behaviour of sheathing-to-framing nail connections are first determined and then used to define the hysteretic properties of finite elements representing these connections. The model nails are subsequently implemented into model walls. The model walls are verified using experimental results for both monotonic and cyclic loading. It is demonstrated that the complex hysteretic behaviour of timber shear walls can be reasonably represented using model shear walls in which nonlinear material failure is concentrated only at the sheathing-to-framing nail connections.
Resumo:
Negli ultimi anni sono state sviluppate varie soluzioni tecniche per la progettazione sismica di strutture. Questa ricerca sviluppa un metodo di confronto basato sull'analisi di costi di costruzione e danni causati dal sisma. Il metodo viene applicato al caso di studio della scuola di Bisignano (CO, Italia). L'edificio è stato progettato conformemente alle NTC 2008 con approccio tradizionale e combinando il contributo di dissipatori viscosi e dissipazione isteretica. Le strutture vengono poi analizzate sotto diverse condizioni sismiche al fine di calcolare i costi di riparazione attesi e comprendere quale soluzione tecnica risulti più economicamente vantaggiosa a parità di azione sismica di progetto.
Resumo:
This paper discusses the torsional response of a scaled reinforced concrete frame structure subjected to several uniaxial shaking table tests. The tested structure is nominally symmetric in the direction of shaking and exhibits torsion attributable to non-uniform yielding of structural components and uncertainties in the building process. Asymmetric behavior is analyzed in terms of displacement, strain in reinforcing bars, energy dissipated at plastic hinges, and damage at section and frame levels. The results show that for low levels of seismic hazard, for which the structure is expected to perform basically within the elastic range, the accidental eccentricity is not a concern for the health of the structure, but it significantly increases the lateral displacement demand in the frames (about 30%) and this might cause significant damage to non-structural components. For high levels of seismic hazard the effects of accidental torsion become less important. These results underline the need to consider accidental eccentricity in evaluating the performance of a structure for very frequent or frequent earthquakes, and suggest that consideration of torsion may be neglected for performance levels associated with rare or very rare earthquakes.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
"NSF/RA-780529."
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
Due to the existence of global modes and local modes of the neighbouring members, damage detection on a structure is more challenging than damage on isolated beams. Detection of an artificial circumferential crack on a joint in a frame-like welded structure is studied in this paper using coupled response measurements. Similarity to real engineering structures is maintained in the fabrication of the test frame. Both the chords and the branch members have hollow sections and the branch members have smaller sizes. The crack is created by a hacksaw on a joint where a branch meets the chord. The methodology is first demonstrated on a single hollow section beam. The test results are then presented for the damaged and undamaged frame. The existence of the damage is clearly observable from the experimental results. It is suggested that this approach offers the-potential to detect damage in welded structures such as cranes, mining equipment, steel-frame bridges, naval and offshore structures. (C) 2003 Elsevier Ltd. All rights reserved.