904 resultados para Theories of mathematics
Resumo:
This inaugural book in the new series Advances in Mathematics Education is the most up to date, comprehensive and avant garde treatment of Theories of Mathematics Education which use two highly acclaimed ZDM special issues on theories of mathematics education (issue 6/2005 and issue 1/2006), as a point of departure. Historically grounded in the Theories of Mathematics Education (TME group) revived by the book editors at the 29th Annual PME meeting in Melbourne and using the unique style of preface-chapter-commentary, this volume consist of contributions from leading thinkers in mathematics education who have worked on theory building. This book is as much summative and synthetic as well as forward-looking by highlighting theories from psychology, philosophy and social sciences that continue to influence theory building. In addition a significant portion of the book includes newer developments in areas within mathematics education such as complexity theory, neurosciences, modeling, critical theory, feminist theory, social justice theory and networking theories. The 19 parts, 17 prefaces and 23 commentaries synergize the efforts of over 50 contributing authors scattered across the globe that are active in the ongoing work on theory development in mathematics education.
Resumo:
Any theory of thinking or teaching or learning rests on an underlying philosophy of knowledge. Mathematics education is situated at the nexus of two fields of inquiry, namely mathematics and education. However, numerous other disciplines interact with these two fields which compound the complexity of developing theories that define mathematics education. We first address the issue of clarifying a philosophy of mathematics education before attempting to answer whether theories of mathematics education are constructible? In doing so we draw on the foundational writings of Lincoln and Guba (1994), in which they clearly posit that any discipline within education, in our case mathematics education, needs to clarify for itself the following questions: (1) What is reality? Or what is the nature of the world around us? (2) How do we go about knowing the world around us? [the methodological question, which presents possibilities to various disciplines to develop methodological paradigms] and, (3) How can we be certain in the “truth” of what we know? [the epistemological question]
Resumo:
According to Karl Popper, widely regarded as one of the greatest philosophers of science in the 20th century, falsifiability is the primary characteristic that distinguishes scientific theories from ideologies – or dogma. For example, for people who argue that schools should treat creationism as a scientific theory, comparable to modern theories of evolution, advocates of creationism would need to become engaged in the generation of falsifiable hypothesis, and would need to abandon the practice of discouraging questioning and inquiry. Ironically, scientific theories themselves are accepted or rejected based on a principle that might be called survival of the fittest. So, for healthy theories on development to occur, four Darwinian functions should function: (a) variation – avoid orthodoxy and encourage divergent thinking, (b) selection – submit all assumptions and innovations to rigorous testing, (c) diffusion – encourage the shareability of new and/or viable ways of thinking, and (d) accumulation – encourage the reuseability of viable aspects of productive innovations.
Resumo:
The objective of the study is to determine the psychometric properties of the Epistemological Beliefs Questionnaire on Mathematics. 171 Secondary School Mathematics Teachers of the Central Region of Cuba participated. The results show acceptable internal consistency. The factorial structure of the scale revealed three major factors, consistent with the Model of the Three Constructs: beliefs about knowledge, about learning and teaching. Irregular levels in the development of the epistemological belief system about mathematics of these teachers were shown, with a tendency among naivety and sophistication poles. In conclusion, the questionnaire is useful for evaluating teacher’s beliefs about mathematics.
Resumo:
The present thesis is a contribution to the debate on the applicability of mathematics; it examines the interplay between mathematics and the world, using historical case studies. The first part of the thesis consists of four small case studies. In chapter 1, I criticize "ante rem structuralism", proposed by Stewart Shapiro, by showing that his so-called "finite cardinal structures" are in conflict with mathematical practice. In chapter 2, I discuss Leonhard Euler's solution to the Königsberg bridges problem. I propose interpreting Euler's solution both as an explanation within mathematics and as a scientific explanation. I put the insights from the historical case to work against recent philosophical accounts of the Königsberg case. In chapter 3, I analyze the predator-prey model, proposed by Lotka and Volterra. I extract some interesting philosophical lessons from Volterra's original account of the model, such as: Volterra's remarks on mathematical methodology; the relation between mathematics and idealization in the construction of the model; some relevant details in the derivation of the Third Law, and; notions of intervention that are motivated by one of Volterra's main mathematical tools, phase spaces. In chapter 4, I discuss scientific and mathematical attempts to explain the structure of the bee's honeycomb. In the first part, I discuss a candidate explanation, based on the mathematical Honeycomb Conjecture, presented in Lyon and Colyvan (2008). I argue that this explanation is not scientifically adequate. In the second part, I discuss other mathematical, physical and biological studies that could contribute to an explanation of the bee's honeycomb. The upshot is that most of the relevant mathematics is not yet sufficiently understood, and there is also an ongoing debate as to the biological details of the construction of the bee's honeycomb. The second part of the thesis is a bigger case study from physics: the genesis of GR. Chapter 5 is a short introduction to the history, physics and mathematics that is relevant to the genesis of general relativity (GR). Chapter 6 discusses the historical question as to what Marcel Grossmann contributed to the genesis of GR. I will examine the so-called "Entwurf" paper, an important joint publication by Einstein and Grossmann, containing the first tensorial formulation of GR. By comparing Grossmann's part with the mathematical theories he used, we can gain a better understanding of what is involved in the first steps of assimilating a mathematical theory to a physical question. In chapter 7, I introduce, and discuss, a recent account of the applicability of mathematics to the world, the Inferential Conception (IC), proposed by Bueno and Colyvan (2011). I give a short exposition of the IC, offer some critical remarks on the account, discuss potential philosophical objections, and I propose some extensions of the IC. In chapter 8, I put the Inferential Conception (IC) to work in the historical case study: the genesis of GR. I analyze three historical episodes, using the conceptual apparatus provided by the IC. In episode one, I investigate how the starting point of the application process, the "assumed structure", is chosen. Then I analyze two small application cycles that led to revisions of the initial assumed structure. In episode two, I examine how the application of "new" mathematics - the application of the Absolute Differential Calculus (ADC) to gravitational theory - meshes with the IC. In episode three, I take a closer look at two of Einstein's failed attempts to find a suitable differential operator for the field equations, and apply the conceptual tools provided by the IC so as to better understand why he erroneously rejected both the Ricci tensor and the November tensor in the Zurich Notebook.
Resumo:
The crisis in the foundations of mathematics is a conceptual crisis. I suggest that we embrace the crisis and adopt a pluralist position towards foundations. There are many foundations in mathematics. However, ‘many foundations’ (for one building) is an oxymoron. Therefore, we shift vocabulary to say that mathematics, as one discipline, is composed of many different theories. This entails that there are no absolute mathematical truths, only truths within a theory. There is no unified, consistent ontology, only ontology within a theory.
Resumo:
"An address delivered at the inauguration of the Rice institute, by Emile Borel ... Translated from the French by Professor Albert Léon Guérard of the Rice institute."
Resumo:
Mode of access: Internet.
Resumo:
The Faculty of Mathematics and Informatics (FMI) of Sofia University “St. Kliment Ohridski” is briefly presented as an educational and research institution. The possible contribution of FMI to KT-DigiCULT-BG project is analyzed.