908 resultados para The West-Pacific
Resumo:
This paper presents materials on the chemical and mineralogical composition of Fe-Mn mineralization in island arcs (Kuril, Nampo, Mariana, New Britain, New Hebrides, and Kermadec) in the western part of the Pacific Ocean. The mineralization was proved to be of hydrothermal and/or hydrogenic genesis. The former is produced by hydrothermal Fe and Mn oxi-hydroxides that cement volcanic-terrigenous material in sediments. Some Fe oxyhydroxides can be derived via the halmyrolysis of volcaniclastic material. Crusts of this stage are characterized by fairly low concentrations of trace and rare elements, and their REE composition is inherited from the volcanic-terrigenous material. The minerals of the Mn oxyhydroxides are todorokite and "Ca-birnessite". The Mn/Fe ratio increases away from the discharge sites of the hydrothermal solutions. The hydrogenic Fe-Mn crusts are characterized by high concentrations of trace and minor elements of both the Mn group (Co, Ni, Tl, and Mo) and the Fe group (REE, Y, and Th). The hydrogenic crusts consist of Fe-vernadite and Mn-feroxyhyte. Some of the hydrothermal crusts originally had a hydrothermal genesis. The first data were obtained on crust B30-72-10 from the Macauley Seamount in the Kermadec island arc, which contained anomalously high concentrations of Co (2587 ppm) and other Mn-related trace elements in the absence of hydrogeneous Fe oxyhydroxides.
Resumo:
The monograph gives the first systematic description of ore-bearing guyots from the West Pacific. It is mostly based on data obtained in numerous expeditions of Russian vessels during 1984-1992. Ore deposits located on upper parts of all slopes and tops of the guyots include phosphorites associated with cobalt- and platinum-rich ferromanganese crusts. Location, origin and prospecting of mineral deposits are discussed on the base of new data on metallogenic factors (geodynamics, tectonics, magmatism, sedimentation and morphostructures).
(Table 2) Concentrations of chemical elements in Fe-Mn material from island arcs in the West Pacific
Resumo:
The degree to which palaeoclimatic changes in the Southern Hemisphere co-varied with events in the high latitude Northern Hemisphere during the Last Termination is a contentious issue, with conflicting evidence for the degree of ‘teleconnection’ between different regions of the Southern Hemisphere. The available hypotheses are difficult to test robustly, however, because there are few detailed palaeoclimatic records in the Southern Hemisphere. Here we present climatic reconstructions from the southwestern Pacific, a key region in the Southern Hemisphere because of the potentially important role it plays in global climate change. The reconstructions for the period 20–10 kyr BP were obtained from five sites along a transect from southern New Zealand, through Australia to Indonesia, supported by 125 calibrated 14C ages. Two periods of significant climatic change can be identified across the region at around 17 and 14.2 cal kyr BP, most probably associated with the onset of warming in the West Pacific Warm Pool and the collapse of Antarctic ice during Meltwater Pulse-1A, respectively. The severe geochronological constraints that inherently afflict age models based on radiocarbon dating and the lack of quantified climatic parameters make more detailed interpretations problematic, however. There is an urgent need to address the geochronological limitations, and to develop more precise and quantified estimates of the pronounced climate variations that clearly affected this region during the Last Termination.
Resumo:
The multicopy var gene family encoding the variant surface antigen Plasmodium falciparum erythrocyte membrane protein 1 is highly diverse, with little overlap between different P. falciparum isolates. We report 5 var genes (varS1-varS5) that are shared at relatively high frequency among 63 genetically diverse P. falciparum isolates collected from 5 islands in the West Pacific region. The varS1, varS2, and varS3 genes were localized to the internal region on chromosome 4, similar to 200 kb from pfdhfr-ts, whereas varS4 and varS5 were mapped to an internal region of chromosome 7, within 100 kb of pfcrt. The presence of varS2 and varS3 were significantly correlated with the pyrimethamine-resistant pfdhfr genotype, whereas varS4 was strongly correlated with the chloroquine-resistant pfcrt genotype. Thus, the conservation of these var genes is the result of their physical linkage with drug-resistant genes in combination with the antimalarial drug pressure in the region.
Resumo:
The degree to which palaeoclimatic changes in the Southern Hemisphere co-varied with events in the high latitude Northern Hemisphere during the Last Termination is a contentious issue, with conflicting evidence for the degree of 'teleconnection' between different regions of the Southern Hemisphere. The available hypotheses are difficult to test robustly, however, because there are few detailed palaeoclimatic records in the Southern Hemisphere. Here we present climatic reconstructions from the southwestern Pacific, a key region in the Southern Hemisphere because of the potentially important role it plays in global climate change. The reconstructions for the period 20-10 kyr BP were obtained from five sites along a transect from southern New Zealand, through Australia to Indonesia, supported by 125 calibrated C-14 ages. Two periods of significant climatic change can be identified across the region at around 17 and 14.2 cal kyr BP, most probably associated with the onset of warming in the West Pacific Warm Pool and the collapse of Antarctic ice during Meltwater Pulse-1A, respectively. The severe geochronological constraints that inherently afflict age models based on radiocarbon dating and the lack of quantified climatic parameters make more detailed interpretations problematic, however. There is an urgent need to address the geochronological limitations, and to develop more precise and quantified estimates of the pronounced climate variations that clearly affected this region during the Last Termination. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Allozyme variation in species of the mangrove genus Avicennia was screened in 25 populations collected from 22 locations in the Indo-West Pacific and eastern North America using 11 loci. Several fixed gene differences supported the specific status of Avicennia alba, A. integra, A. marina, and A. rumphiana from the Indo-West Pacific, and A. germinans from the Atlantic-East Pacific. The three varieties of A. marina, var. marina, var. eucalyptifolia, and var. australasica, had higher genetic similarities (Nei's I) and no fixed gene differences, confirming their conspecific status. Strong genetic structuring was observed in A. marina, with sharp changes in gene frequencies at the geographical margins of varietal distributions. The occurrence of alleles found otherwise in only one variety, in only immediately adjacent populations of another variety, provided evidence of introgession between varieties. The varieties appear to have diverged recently in the Pleistocene and are apparently not of ancient Cretaceous origin, as suggested earlier. Despite evidence of high degrees of outcrossing, gene flow among populations was relatively low (N(e)m less than or equal to 1-2), except where populations were geographically continuous, questioning assumptions that these widespread mangrove species achieve high levels of long-distance dispersal.
Resumo:
The scleractinian coral species, Seriatopora hystrix and Acropora longicyathus, are widely distributed throughout the latitudinal range of the tropical west Pacific. These 2 coral species live in a mutually beneficial relation with symbiotic dinoflagellates (zooxanthellae), which are passed to their progeny by vertical transmission (zooxanthellate eggs or larvae) and horizontal transmission (eggs or larvae that acquire symbionts from the environment), respectively. For S. hystrix, vertical transmission might create biogeographically isolated and genetically differentiated symbiont populations because the extent of its larval migration is known to be limited. On the other hand, horizontal transmission in corals such as A. longicyathus may result in genetically connected symbiont populations, especially if its zooxanthellae taxa are widely distributed. To examine these hypotheses, symbionts were collected from colonies of S. hystrix and A. longicyathus living in the Great Barrier Reef (Australia), South China Sea (Malaysia) and East China Sea (Ryukyus Archipelago, Japan), and were examined using restriction fragment length polymorphism and sequence analysis of large and small subunit rRNA genes. Phylogenetic analysis assigned the symbionts to 1 of 3 taxonomically distinct groups, known as clades. Symbionts from Australian and Japanese S. hystrix were placed in Clade C, and Malaysian S. hystrix symbionts in the newly described Clade D. Seven of 11 Australian and all Japanese and Malaysian colonies of A. longicyathus had symbiotic dinoflagellates that also grouped with Clade C, but symbionts from the remaining Australian colonies of A. longicyathus grouped with Clade A. Analysis of molecular variance of Clade C symbionts found significant genetic variation in 1 or more geographic groups (69.8%) and to a lesser extent among populations within geographic regions (13.6%). All populations of Clade C symbionts from S. hystrix were genetically differentiated according to geographic region. Although Clade C symbionts of A. longicyathus from Japan resolved into a distinct geographic group, those from Australia and Malaysia did not and were genetically connected. We propose that these patterns of genetic connectivity correlate with differences in the dispersal range of the coral or symbiont propagules and are associated with their respective modes of symbiont transmission.
Resumo:
Measurements are given for all and full descriptions and illustrations for some of the following enenterid species: Enenterum aureum Linton, 1910 in Kyphosus bigibbus and K. sydneyanus? from Ningaloo Coral Reef, Western Australia, K. vaigiensis from off Heron Island, Queensland and K. vaigiensis from off Moorea, French Polynesia; E. mannarense Hafeezullah, 1980 in K. bigibbus and K. sydneyanus? from Ningaloo Coral Reef; E. elongatum Yamaguti, 1970 in K. vaigiensis from Heron Island, Queensland and K. bigibbus and K. sydneyanus? from Ningaloo Coral Reef; Koseiria alanwilliamsi sp. nov. in Kyphosus cornelii from off Kalbarri, Western Australia; Koseiria xishaense Gu et Shen, 1983 in K. vaigiensis from off Heron Island and K. bigibbus from off Palau, Micronesia; Proenenterum isocotylum Manter, 1954 in Aplodactylus arctidens from off Stanley, Tasmania; R ericotylum Manter, 1954 in A. arctidens from off Stanley; Cadenatella isuzumi Machida, 1993 from Kyphosus bigibbus and K. sydneyanus? from Ningaloo Coral Reef; Cadenatella pacifica (Yamaguti, 1970) from Kyphosus bigibbus from Ningaloo Coral Reef. Two recent cladistic studies of the Enenteridae are discussed and a further analysis has shown that Enenterum and Cadenatella are monophyletic, whilst Koseiria appears polyphyletic. The zoogeography and host-specificity of Kyphosus-inhabiting enenterids is discussed.