999 resultados para Teoria de grafs
Resumo:
La memòria que ací es presenta s'emmarca dins de l'àrea de teoria de grafs. En concret es treballa la implementació d'un algorisme per trobar el subgraf comú maximal (SCM) de dos grafs mitjançant la cerca de colles maximals (CM). L'aportació principal del projecte consisteix en, donats dos grafs qualsevol, trobar el seu graf associat per tal de poder cercar la seva colla maximal (CM). I així, utilitzant funcions existents en el llenguatge de programació, poder trobar el seu subgraf comú maximal (SCM), necessari per calcular la distància entre grafs i així determinar quan d'isomorfs són.
Resumo:
Rotation distance quantifies the difference in shape between two rooted binary trees of the same size by counting the minimum number of elementary changes needed to transform one tree to the other. We describe several types of rotation distance, and provide upper bounds on distances between trees with a fixed number of nodes with respect to each type. These bounds are obtained by relating each restricted rotation distance to the word length of elements of Thompson's group F with respect to different generating sets, including both finite and infinite generating sets.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We give a 5-approximation algorithm to the rooted Subtree-Prune-and-Regraft (rSPR) distance between two phylogenies, which was recently shown to be NP-complete by Bordewich and Semple [5]. This paper presents the first approximation result for this important tree distance. The algorithm follows a standard format for tree distances such as Rodrigues et al. [24] and Hein et al. [13]. The novel ideas are in the analysis. In the analysis, the cost of the algorithm uses a \cascading" scheme that accounts for possible wrong moves. This accounting is missing from previous analysis of tree distance approximation algorithms. Further, we show how all algorithms of this type can be implemented in linear time and give experimental results.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We construct generating trees with with one, two, and three labels for some classes of permutations avoiding generalized patterns of length 3 and 4. These trees are built by adding at each level an entry to the right end of the permutation, which allows us to incorporate the adjacency condition about some entries in an occurrence of a generalized pattern. We use these trees to find functional equations for the generating functions enumerating these classes of permutations with respect to different parameters. In several cases we solve them using the kernel method and some ideas of Bousquet-Mélou [2]. We obtain refinements of known enumerative results and find new ones.
Resumo:
To a finite graph there corresponds a free partially commutative group: with the given graph as commutation graph. In this paper we construct an orthogonality theory for graphs and their corresponding free partially commutative groups. The theory developed here provides tools for the study of the structure of partially commutative groups, their universal theory and automorphism groups. In particular the theory is applied in this paper to the centraliser lattice of such groups.
Resumo:
Counting labelled planar graphs, and typical properties of random labelled planar graphs, have received much attention recently. We start the process here of extending these investigations to graphs embeddable on any fixed surface S. In particular we show that the labelled graphs embeddable on S have the same growth constant as for planar graphs, and the same holds for unlabelled graphs. Also, if we pick a graph uniformly at random from the graphs embeddable on S which have vertex set {1, . . . , n}, then with probability tending to 1 as n → ∞, this random graph either is connected or consists of one giant component together with a few nodes in small planar components.
Resumo:
One of the main implications of the efficient market hypothesis (EMH) is that expected future returns on financial assets are not predictable if investors are risk neutral. In this paper we argue that financial time series offer more information than that this hypothesis seems to supply. In particular we postulate that runs of very large returns can be predictable for small time periods. In order to prove this we propose a TAR(3,1)-GARCH(1,1) model that is able to describe two different types of extreme events: a first type generated by large uncertainty regimes where runs of extremes are not predictable and a second type where extremes come from isolated dread/joy events. This model is new in the literature in nonlinear processes. Its novelty resides on two features of the model that make it different from previous TAR methodologies. The regimes are motivated by the occurrence of extreme values and the threshold variable is defined by the shock affecting the process in the preceding period. In this way this model is able to uncover dependence and clustering of extremes in high as well as in low volatility periods. This model is tested with data from General Motors stocks prices corresponding to two crises that had a substantial impact in financial markets worldwide; the Black Monday of October 1987 and September 11th, 2001. By analyzing the periods around these crises we find evidence of statistical significance of our model and thereby of predictability of extremes for September 11th but not for Black Monday. These findings support the hypotheses of a big negative event producing runs of negative returns in the first case, and of the burst of a worldwide stock market bubble in the second example. JEL classification: C12; C15; C22; C51 Keywords and Phrases: asymmetries, crises, extreme values, hypothesis testing, leverage effect, nonlinearities, threshold models
Resumo:
We introduce and study a class of infinite-horizon nonzero-sum non-cooperative stochastic games with infinitely many interacting agents using ideas of statistical mechanics. First we show, in the general case of asymmetric interactions, the existence of a strategy that allows any player to eliminate losses after a finite random time. In the special case of symmetric interactions, we also prove that, as time goes to infinity, the game converges to a Nash equilibrium. Moreover, assuming that all agents adopt the same strategy, using arguments related to those leading to perfect simulation algorithms, spatial mixing and ergodicity are proved. In turn, ergodicity allows us to prove “fixation”, i.e. that players will adopt a constant strategy after a finite time. The resulting dynamics is related to zerotemperature Glauber dynamics on random graphs of possibly infinite volume.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
A new expression for the characteristic function of log-spot in Heston model is presented. This expression more clearly exhibits its properties as an analytic characteristic function and allows us to compute the exact domain of the moment generating function. This result is then applied to the volatility smile at extreme strikes and to the control of the moments of spot. We also give a factorization of the moment generating function as product of Bessel type factors, and an approximating sequence to the law of log-spot is deduced.
Resumo:
Using recent results on the behavior of multiple Wiener-Itô integrals based on Stein's method, we prove Hsu-Robbins and Spitzer's theorems for sequences of correlated random variables related to the increments of the fractional Brownian motion.
Resumo:
Approximate Quickselect, a simple modification of the well known Quickselect algorithm for selection, can be used to efficiently find an element with rank k in a given range [i..j], out of n given elements. We study basic cost measures of Approximate Quickselect by computing exact and asymptotic results for the expected number of passes, comparisons and data moves during the execution of this algorithm. The key element appearing in the analysis of Approximate Quickselect is a trivariate recurrence that we solve in full generality. The general solution of the recurrence proves to be very useful, as it allows us to tackle several related problems, besides the analysis that originally motivated us. In particular, we have been able to carry out a precise analysis of the expected number of moves of the ith element when selecting the jth smallest element with standard Quickselect, where we are able to give both exact and asymptotic results. Moreover, we can apply our general results to obtain exact and asymptotic results for several parameters in binary search trees, namely the expected number of common ancestors of the nodes with rank i and j, the expected size of the subtree rooted at the least common ancestor of the nodes with rank i and j, and the expected distance between the nodes of ranks i and j.