944 resultados para TRANSFORMACIONES DE LAPLACE
Resumo:
We develop a method based on spectral graph theory to approximate the eigenvalues and eigenfunctions of the Laplace-Beltrami operator of a compact riemannian manifold -- The method is applied to a closed hyperbolic surface of genus two -- The results obtained agree with the ones obtained by other authors by different methods, and they serve as experimental evidence supporting the conjectured fact that the generic eigenfunctions belonging to the first nonzero eigenvalue of a closed hyperbolic surface of arbitrary genus are Morse functions having the least possible total number of critical points among all Morse functions admitted by such manifolds
Resumo:
In design and manufacturing, mesh segmentation is required for FACE construction in boundary representation (BRep), which in turn is central for featurebased design, machining, parametric CAD and reverse engineering, among others -- Although mesh segmentation is dictated by geometry and topology, this article focuses on the topological aspect (graph spectrum), as we consider that this tool has not been fully exploited -- We preprocess the mesh to obtain a edgelength homogeneous triangle set and its Graph Laplacian is calculated -- We then produce a monotonically increasing permutation of the Fiedler vector (2nd eigenvector of Graph Laplacian) for encoding the connectivity among part feature submeshes -- Within the mutated vector, discontinuities larger than a threshold (interactively set by a human) determine the partition of the original mesh -- We present tests of our method on large complex meshes, which show results which mostly adjust to BRep FACE partition -- The achieved segmentations properly locate most manufacturing features, although it requires human interaction to avoid over segmentation -- Future work includes an iterative application of this algorithm to progressively sever features of the mesh left from previous submesh removals
Application of Laplace transform technique to the solution of certain third-order non-linear systems
Resumo:
A number of papers have appeared on the application of operational methods and in particular the Laplace transform to problems concerning non-linear systems of one kind or other. This, however, has met with only partial success in solving a class of non-linear problems as each approach has some limitations and drawbacks. In this study the approach of Baycura has been extended to certain third-order non-linear systems subjected to non-periodic excitations, as this approximate method combines the advantages of engineering accuracy with ease of application to such problems. Under non-periodic excitations the method provides a procedure for estimating quickly the maximum response amplitude, which is important from the point of view of a designer. Limitations of such a procedure are brought out and the method is illustrated by an example taken from a physical situation.
Resumo:
对于为论证球形液滴附加压强的Young-Laplace公式而设计的一个理想实验,有文献试图借助吉布斯自由能函数进行证明,本文给出符合这一条件的证明方法.
Resumo:
[ES]Este artículo pretende analizar la situación de la actividad siderometalúrgica guipuzcoana durante el siglo XVII y testar la verdadera repercusión de la crisis del siglo XVII en dicho sector. Para ello se ha utilizado un amplio elenco documental procedente tanto de archivos locales como regionales y nacionales, que responde a una amplia variedad tipológica.
Resumo:
[ES]El presente artículo pretende analizar cómo se desarrolló en el sector costero central de Guipúzcoa (Orio, Zarauz y Guetaria) la llamada «crisis del XVII» y qué mecanismos arbitraron sus habitantes para sobreponerse a las dificultades. En realidad, se trata de analizar y descubrir qué mecanismos utilizaron para llevar a cabo la reconversión y transformación de sus actividades. En el mencionado ámbito tres fueron las principales actividades económicas relacionadas con el mar: el comercio, la construcción naval y la pesca. Las tres actividades tuvieron que llevar a cabo una serie de reestructuraciones y amoldarse continuamente a lo cambiante de la realidad económica de la época a fin de perdurar y sobrevivir.
Resumo:
Actas de la XII Reunión Científica de la Fundación Española de Historia Moderna, celebrada en la Universidad de León en 19-21 de junio de 2012.
Resumo:
747 p. (Bibliogr.: 521-546]
Resumo:
En todas las sociedades, a lo largo de la historia, ha sido necesaria la producción y, por tanto, ha habido necesidad de desarrolar trabajo. Sin embargo, la forma en que éste ha sido articulado ha variado considerablemente a lo largo del tiempo.
Resumo:
[EUS] Gorbeako Mendi Taldeko haran atlantiarretako baserria eta paisaia. Aldakuntza Gorbeako Mendi Taldeko haran atlantiarretan izandako paisai aldaketa berria aurkeztu nahi da, horretan XX. mendearen erdian nagusitzen zen baserri intentsibotik gaur egun askoz estentsiboagoa den beste batera pasatzeak zerikusi handia duelarik. Erabili diren informazio iturri printzipalak argazki aereoa eta inkesta izan dira.
Resumo:
VI,533 p.
Resumo:
This thesis presents a novel class of algorithms for the solution of scattering and eigenvalue problems on general two-dimensional domains under a variety of boundary conditions, including non-smooth domains and certain "Zaremba" boundary conditions - for which Dirichlet and Neumann conditions are specified on various portions of the domain boundary. The theoretical basis of the methods for the Zaremba problems on smooth domains concern detailed information, which is put forth for the first time in this thesis, about the singularity structure of solutions of the Laplace operator under boundary conditions of Zaremba type. The new methods, which are based on use of Green functions and integral equations, incorporate a number of algorithmic innovations, including a fast and robust eigenvalue-search algorithm, use of the Fourier Continuation method for regularization of all smooth-domain Zaremba singularities, and newly derived quadrature rules which give rise to high-order convergence even around singular points for the Zaremba problem. The resulting algorithms enjoy high-order convergence, and they can tackle a variety of elliptic problems under general boundary conditions, including, for example, eigenvalue problems, scattering problems, and, in particular, eigenfunction expansion for time-domain problems in non-separable physical domains with mixed boundary conditions.