972 resultados para THIN SOLID FILMS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The composition, structural, electrical, and optical properties of as-grown and heat treated tin-mono-sulfide (SnS) ultra-thin films have been studied. The ultra-thin SnS films were prepared on glass substrates by thermal resistive evaporation technique. All the SnS films contained nanocrystallites and exhibited p-type conductivity with a low Hall-mobility, <50 cm(2)/Vs. All these films are highly tin rich in nature and exhibited orthorhombic crystal structure. As compared to other films, the SnS films annealed at 300 degrees C showed a low electrical resistivity of similar to 36 Omega cm with an optical band gap of similar to 1.98 eV. The observed electrical and optical properties of all the films are discussed based on their composition and structural parameters. These nanocrystalline ultra-thin SnS films could be expected as a buffer layer for the development of tandem solar cell devices due to their low-resistivity and high absorbability with an optimum band gap. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report results of classical molecular-dynamics simulations of bcc and beta-Ta thin films. Thermal PVD film growth, surface roughness, argon ion bombardment, phase stability and transformation, vacancy and adatom diffusion, and thermal relaxation kinetics are discussed. Distinct differences between the two structures are observed, including a complex vacancy diffusion mechanism in beta-Ta. Embedded atom method potentials, which were fitted to bcc properties, have been used to model the Ta-Ta interactions. In order to verify the application of these potentials to the more complex beta-Ta structure, we have also performed density functional theory calculations. Results and implications of these calculations are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes an investigation of the properties of polymer films prepared by plasma immersion ion implantation and deposition. Films were synthesized from low pressure benzene glow discharges, biasing the samples with 25 W negative pulses. The total energy deposited in the growing layer was varied tailoring simultaneously pulse frequency and duty cycle. The effect of the pulse characteristics on the chemical composition and mechanical properties of the films was studied by X-ray photoelectron spectroscopy (XPS) and nanoindentation, respectively. Analysis of the deconvoluted C 1s XPS peaks demonstrated that oxygen was incorporated in all the samples. The chemical modifications induced structural reorganization, characterized by chain cross-linking and unsaturation, affecting material properties. Hardness and plastic resistance parameter increased under certain bombardment conditions. An interpretation is proposed in terms of the total energy delivered to the growing layer. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mercury thin films prepared by electrochemical deposition on Pt-Ir alloy and after partial removing of mercury at different temperatures were studied by means of an interferometric surface mapping microscope and by X-ray photoelectronic spectroscopy. Mercury film samples having mercury partially removed by anodic stripping at a potential more positive than the corresponding peak in the voltammogram were also studied using the same techniques. For blank samples the surface topographic studies showed well defined grain boundaries. Mercury film samples when heated up to different temperatures showed as material is removed and that the surface roughness decreases as the temperature increases. For samples heated up to 800 degrees C the surface roughness is approximately the same that for the blank. A model for the interphase of volumetric mercury electrodeposited on a Pt-Ir alloy has been proposed using samples both electrochemically and thermally removed of their Hg coatings. The model includes a layered three-region structure, containing at least two Pt-Hg intermetallics: PtHg4 and PtHg2. A substrate modified region, iridium rich, has also been detected. (C) 1999 Elsevier B.V. S.A. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding liquid flow at the vicinity of solid surfaces is crucial to the developmentrnof technologies to reduce drag. One possibility to infer flow properties at the liquid-solid interface is to compare the experimental results to solutions of the Navier-Stokes equations assuming the no-slip boundary condition (BC) or the slip BC. There is no consensus in the literature about which BC should be used to model the flow of aqueous solutions over hydrophilic surfaces. Here, the colloidal probe technique is used to systematically address this issue, measuring forces acting during drainage of water over a surface. Results show that experimental variables, especially the cantilever spring constant, lead to the discrepancy observed in the literature. Two different parameters, calculated from experimental variables, could be used to separate the data obtained in this work and those reported in the literature in two groups: one explained with the no-slip BC, and another with the slip BC. The observed residual slippage is a function of instrumental variables, showing a trend incompatible with the available physical justifications. As a result, the no-slip is the more appropriate BC. The parameters can be used to avoid situations where the no-slip BC is not satisfied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin solid films were extensively used in the making of solar cells, cutting tools, magnetic recording devices, etc. As a result, the accurate measurement of mechanical properties of the thin films, such as hardness and elastic modulus, was required. The thickness of thin films normally varies from tens of nanometers to several micrometers. It is thus challenging to measure their mechanical properties. In this study, a nanoscratch method was proposed for hardness measurement. A three-dimensional finite element method (3-D FEM) model was developed to validate the nanoscratch method and to understand the substrate effect during nanoscratch. Nanoindentation was also used for comparison. The nanoscratch method was demonstrated to be valuable for measuring hardness of thin solid films.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different amounts of Ru were implanted into thermally evaporated WO3 thin films by ion implantation. The films were subsequently annealed at 600oC for 2 hours in air to remove defects generated during the ion implantation. The Ru concentrations of four samples have been quantified by Rutherford Backscattering Spectrometry as 0.8, 5.5, 9 and 11.5 at%. The un-implanted WO3 films were highly porous but the porosity decreased significantly after ion implantation as observed by Transmission Electron Microscopy and Scanning Electron Microscopy. The thickness of the films also decreased with increasing Ru-ion dose, which is mainly due to densification of the porous films during ion implantation. From Raman spectroscopy two peaks at 408 and 451 cm-1 (in addition to the typical vibrational peaks of the monoclinic WO3 phase) associated with Ru were observed. Their intensity increased with increasing Ru concentration. X-Ray Photoelectron Spectroscopy showed a metallic state of Ru with binding energy of Ru 3d5/2 at 280.1 eV. This peak position remained almost unchanged with increasing Ru concentration. The resistances of the Ru-implanted films were found to increase in the presence of NO2 and NO with higher sensor response to NO2. The effect of Ru concentration on the sensing performance of the films was not explicitly observed due to reduced film thickness and porosity with increasing Ru concentration. However, the results indicate that the implantation of Ru into WO3 films with sufficient film porosity and film thickness can be beneficial for NO2 sensing at temperatures in the range of 250°C to 350°C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Al-C-N-O composite thin films have been synthesized by radio frequency reactive diode sputtering of an aluminum target in plasmas of N2+O2+CH4 gas mixtures. The chemical structure and composition of the films have been investigated by means of infrared and X-ray photoelectron spectroscopy. The results reveal the formation of C-N, Al-C, Al-N and Al-O bonds. The X-ray diffraction pattern suggests that the films are of nanometer composite material and contain predominately crystalline grains of hexagonal AlN and α-Al2O3. A good thermal stability of the composite has been confirmed by the annealing treatment at temperatures up to 600 °C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Summary This manual was developed to guide a move towards common standards for undertaking and reporting research microscopy for malaria parasite detection, identification and quantification. It contains procedures based on agreed quality assurance standards for research malaria microscopy defined at a consultation of: TDR, the Special Programme for Research and Training in Tropical Diseases; the Worldwide Antimalarial Resistance Network (WWARN), United Kingdom; the Foundation for Innovative New Diagnostics (FIND), Switzerland; the Centers for Disease Control and Prevention (CDC), USA; the Kenya Medical Research Institute (KEMRI) and later expanded to include Amref Health Africa (Kenya); the Eijkman-Oxford Clinical Research Unit (EOCRU), Indonesia; Institut Pasteur du Cambodge (IPC); Institut de recherche pour le Développement (IRD), Senegal; the Global Good and Intellectual Ventures Laboratory (GG-IVL), USA; the Mahidol-Oxford Tropical Medicine Research Unit (MORU), Thailand; Queensland University of Technology (QUT), Australia, and the Shoklo Malaria Research Unit (SMRU), Thailand. These collaborating institutions commit to adhering to these standards in published research studies. It is hoped that they will form a solid basis for the wider adoption of standardized reference microscopy protocols for malaria research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A modified method has been developed for the deposition of transparent semiconducting thin films of tin oxide, involving the chemical vapour phase oxidation of tin iodide. These films show sheet resistances greater than 100 Ω/□ and an average optical transmission in the visible range exceeding 80%. The method avoids uncontrolled contamination, resulting in better reproducibility of the films. The films showed direct and indirect transitions and the possibility of an indirect forbidden transition. X-ray diffraction studies reveal that the films are polycrystalline. The low mobility values of the films have been attributed to the grain boundary scattering effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The significant advancement and growth of organic and flexible electronic applications demand materials with enhanced properties. This paper reports the fabrication of a nonsynthetic polymer thin film using radio frequency plasma polymerisation of 3,7-dimethyl-1,6-octadien-3-ol. The fabricated optically transparent thin film exhibited refractive index of approximately 1.55 at 500 nm and rate of deposition was estimated to be 40 nm/min. The surface morphology and chemical properties of the thin films were also reported in this paper. The optical band gap of the material is around 2.8 eV. The force of adhesion and Young's modulus of the linalool polymer thin films were measured using force-displacement curves obtained from a scanning probe microscope. The friction coefficient of linalool polymer thin films was measured using the nanoscratch test. The calculated Young's modulus increased linearly with increase in input power while the friction coefficient decreased.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The properties of thin films depend to a large extent upon their mechanical stability which in turn is dependent on the intrinsic stresses developed during evaporation. This paper describes a simple method for the measurement of stresses in thin films by the use of real-time holographic interferometry.