965 resultados para Sustainable Development of Maritime Ports
Resumo:
Doutoramento em Estudos de Desenvolvimento
Resumo:
Maritime ports are inevitable for India’s economic development. The very existence and sustainable development of ports depend on clean port environment. There is a notion that shipping is an over regulated industry. But in India, it is being operated under sub- standard conditions, raising crucial issues of environmental pollution in the country’s ports. The negative impacts of vessel sourced pollution on the eco-fragile coastal peninsula can be detrimental to the living conditions, health and interests of the coastal population. It can disturb marine life and imbalance the aquatic ecosystem. The present study analyses control of vessel sourced pollution in Indian ports from an economic and ecological perspective. The study investigates legal reasons behind the weak control, regulation and monitoring over vessel sourced pollution in Indian ports. The loopholes in the legal system are identified and suggestion made to implement stronger enforcement. Unless, vessel operations are properly regulated in ports, the trade and economic prospects of India will be jeopardized.
Resumo:
Russia has been one of the fastest developing economic areas in the world. Based on the GDP, the Russian economy grew evenly since the crisis in 1998 up till 2008. The growth in the gross domestic product has annually been some 5–10%. In 2007, the growth reached 8.1%, which is the highest figure after the 10% growth in 2000. Due to the growth of the economy and wage levels, purchasing power and consumption have been strongly increasing. The growing consumption has especially increased the imports of durables, such as passenger cars, domestic appliances and electronics. The Russian ports and infrastructure have not been able to satisfy the growing needs of exports and imports, which is why quite a large share of Russian foreign trade is going through third countries as transit transports. Finnish ports play a major role in transit transports to and from Russia. About 15% of the total value of Russian imports was transported through Finland in 2008. The economic recession that started in autumn 2008 and continues to date has had an impact on the economic development of Russia. The export income has decreased, mainly due to the reduced world market prices of energy products (oil and gas) and raw minerals. Investments have been postponed, getting credit is more difficult than before, and the ruble has weakened in relation to the euro and the dollar. The imports are decreasing remarkably, and are not forecast to reach the 2008 volumes even in 2012. The economic crisis is reflected in Finland's transit traffic. The volume of goods transported through Finland to and from Russia has decreased almost in the same proportion as the imports of goods to Russia. The biggest risk threatening the development of the Russian economy over long term is its dependence on export income from oil, gas, metals, minerals and forest products, as well as the trends of the world market prices of these products. Nevertheless, it is expected that the GDP of Russia will start to grow again in the forthcoming years due to the increased demand for energy products and raw minerals in the world. At the same time, it is obvious that the world market prices of these products will go up with the increasing demand. The increased income from exports will lead to a growth of imports, especially those of consumer goods, as the living standard of Russian citizens rises. The forecasts produced by the Russian Government concerning the economic development of Russia up till 2030 also indicate a shift in exported goods from raw materials to processed products, which together with energy products will become the main export goods of Russia. As a consequence, Russia may need export routes through third countries, which can be seen as an opportunity for increased transit transports through the ports of Finland. The ports competing with the ports of Finland for Russian foreign trade traffic are the Russian Baltic Sea ports and the ports of the Baltic countries. The strongest competitors are the Baltic Sea ports handling containers. On the Russian Baltic Sea, these ports include Saint Petersburg, Kaliningrad and, in the near future, the ports of Ust-Luga and possibly Vyborg. There are plans to develop Ust-Luga and Vyborg as modern container ports, which would become serious competitors to the Finnish ports. Russia is aiming to redirect as large a share as possible of foreign trade traffic to its own ports. The ports of Russia and the infrastructure associated with them are under constant development. On the other hand, the logistic capacity of Russia is not able to satisfy the continually growing needs of the Russian foreign trade. The capacity problem is emphasized by a structural incompatibility between the exports and imports in the Russian foreign trade. Russian exports can only use a small part of the containers brought in with imports. Problems are also caused by the difficult ice conditions and narrow waterways leading to the ports. It is predicted that Finland will maintain its position as a transit route for the Russian foreign trade, at least in the near future. The Russian foreign trade is increasing, and Russia will not be able to develop its ports in proportion with the increasing foreign trade. With the development of port capacity, cargo flows through the ports of Russia will grow. Structural changes in transit traffic are already visible. Firms are more and more relocating their production to Russia, for example as regards the assembly of cars and warehousing services. Simultaneously, an increasing part of transit cargoes are sent directly to Russia without unloading and reloading in Finland. New product groups have nevertheless been transported through Finland (textile products and tools), replacing the lost cargos. The global recession that started in autumn 2008 has influenced the volume of Russian imports and, consequently, the transit volumes of Finland, but the recession is not expected to be of long duration, and will thus only have a short-term impact on transit volumes. The Finnish infrastructure and services offered by the logistic chain should also be ready to react to the changes in imported product groups as well as to the change in Russian export products in the future. If the development plans of the Russian economy are realized, export products will be more refined, and the share of energy and raw material products will decrease. The other notable factor to be taken into consideration is the extremely fast-changing business environment in Russia. Operators in the logistic chain should be flexible enough to adapt to all kinds of changes to capitalise on business opportunities offered by the Russian foreign trade for the companies and for the transit volumes of Finnish ports, also in the future.
Resumo:
In the past few years there has been a clear trend of attaching increasing importance to "inforstructures", or the capacity of ports to process the information that accompanies foreign trade flows, so that the processing becomes a facilitating factor for trade, rather than an obstacle.This led to development of the concept of a port community system, which is a computerized system that interconnects all the members of a logistics community, making the exchange of documentation as effective as possible, reducing the volume of data to be re-entered in different systems and ultimately improving the whole process of monitoring an operation until its completion. Computerization of communications between all the actors at the ports facilitates integration of the community, while it also assists interaction between ports, thus forming logistics corridors.
Resumo:
Los suelos estabilizados mediante compactación, permiten obtener materiales con ventajas ténicas y economicas en diferentes tipos de obras de ingeniería. Ejemplos de su uso se tiene en bases viales de autopistas, rutas o calles urbanas, pistas de aterrizaje, barreras de contención para enterramientos sanitarios o lagunas de estabilización, apoyos de plateas para fundación de edificios, losas industriales, entre otras aplicaciones. Las fallas en este tipo de construcciones pueden resultar en catástrofes ambientales, sociales y elevadas pérdidas económicas, por lo que resulta de gran importancia optimizar el diseño e incrementar la seguridad de este tipo de construcciones. Las obras con estas características involucran grandes volúmenes y/o superficies que requieren controles sistemáticos durante su desarrollo, a los fines de garantizar el cumplimiento de las propiedades de los materiales establecidos en la etapa de diseño. De esta forma, es necesario contar con ensayos de campo sencillos, confiables y eficientes que permitan identificar propiedades físicas, mecánicas e hidráulicas. Las geoestructuras generadas mediante la compactación del suelo próximo al sector de construcción pueden funcionar adecuadamente, con reducidos costos de material y transporte. Su estabilización puede ejecutarse en forma natural, o con la incorporación de agregados minerales como bentonita, cal o cemento. Estas incorporaciones mejoran las propiedades hidráulicas y mecánicas del material, optimizando el comportamiento requerido para la obra. Para establecer la forma en la que estos minerales modifican el comportamiento del suelo local compactado deben realizarse investigaciones especiales con los materiales involucrados. En el ámbito internacional existen numerosas investigaciones sobre comportamiento de suelos compactados, no obstante, si bien aportan antecedentes para la planificación de estudios locales, sus resultados no pueden trasladarse de manera directa. Las características propias del suelo local constituye la principal variable debido a la diversidad en las propiedades geotécnicas de cada Región. Esta investigación, se focaliza en el empleo de suelos limosos de la formación loéssica de la zona central de Argentina. Los suelos de la llanura cordobesa poseen comportamientos particulares, los cuales son contemplados en los diseños presentados como resutado de las investigaciones internacionales. Esta particularidad se relaciona con su inestabilidad, lo que los clasifica como suelos colapsables. Los resultados obtenidos en este trabajo podrán ser extendidos a una gran superficie de la Provincia de Córdoba y a la Región Pampeana en general, a los fines de establecer recomendaciones de diseño y construcción para la confección de Pliegos de Especificaciones Técnicas de diferentes tipos de obras públicas y privadas. El estudio contempla la ejecución de un plan experimental a escala de laboratorio y campo. Los materiales corresponden a suelo limosos puros, y diferentes agregados tales como bentonita, cal y cemento. Se planifican ensayos para evaluar el desempeño del material, a partir de la confección de muestras preparadas con diferentes condiciones de compactación (energía, humedad y método), y en forma de mezcla con los distintos tipos de agregados. Se realizarán ensayos de permeabilidad en celdas de pared rígida y flexible, junto a ensayos mecánicos de compresión confinada, simple y triaxial. Para el trabajo experimental de campo se prevé la ejecución de terraplenes de prueba instrumentados con tensiómetros e infiltrómetros para evaluar el comportamiento hidraúlico en el tiempo, junto con ensayos de penetración y plato de carga para la caracterización mecánica. En forma conjunta se propone el desarrollo de modelos numéricos de caracterización hidromecánica. Stabilized soils by compaction, produce materials technical and economic advantages in different types of engineering works. For example, road bases in highways, roads or city streets, containment barriers for sanitary landfill or stabilization ponds, foundation support of building, industrial flat, and other applications. Failures can result in environmental catastrophes, social, and economic loss, so it is important to optimize the design and increase the safety of such buildings. These works involve large surfaces that require systematic tests during construction, so it is necessary to have simple field tests, reliable and efficient to identify physical, mechanical and hydraulic properties. The geo-structures generated by local soil compaction have reduced material and transportation costs. Stabilization can be naturally, or with the addition of mineral aggregates as bentonite, lime and cement. These additions improve the hydraulic and mechanical properties of the material. So, special investigations should be conducted with the materials involved. There are many international studies on compacted soils behavior but their results can not be transferred directly due to the particularities of regional soils. For this research silty soils of central Argentina are the main focus. The soils of Córdoba plains are instability, so are classified as collapsible soils. The results obtained in this work may be extended to a large area of the Province of Cordoba and the Pampas region in general, in order to establish design and construction recommendations. The study includes laboratory and field tests. The materials are pure silty soil, and different aggregates such as bentonite, lime and cement. Tests are planned to evaluate the performance. Laboratory includes rigid and flexible wall cells, confined, triaxial and simple compression tests. For field experimental instrumented embankments will be constructed. A numerical hydromechanical model will be developed.
Resumo:
The present study focuses on the stability of the coast, exploitation of the coastal resources, human activities within the study are that extends from Fort Cochin at north to Thottappally at south, central Kerala State and hinterlands, socio-economic problems of the coastal community and the environmental issues arising in the recent past due to human activities. The objective of the study is critically analyse the coastal zone region and prevailing situation and to propose a comprehensive management plan for the sustainable development of the region under study. The thesis covers varied aspects of coastal uses like fisheries, tourism, land use, water resources etc. To critically examine the above scenarios, the ILWIS (Integrated Land and Water Information Systems) – GIS software has been used. A satellite image of the area has been used for the coastline change detection and land use patterns. The outcome of the present study will be beneficial to the various stakeholders within the coastal region and its hinterlands. To further add, this study should find better applications to similar or near-similar situations of Southeast Asia where identical scenarios are noticeable.
Resumo:
Department of Applied Economics, Cochin University of Science and Technology
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Includes bibliography