977 resultados para Sunlight irradiance


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The photocatalytic performance of TiO(2)-SiMgO(x) ceramic plates for trichloroethylene abatement in gas phase has been evaluated under sun irradiance conditions. A continuous flow Pyrex glass reactor fixed on the focus of a compound parabolic collector has been used. The performance of the hybrid photocatalyst has been evaluated as the variation of TCE conversion and reaction products formation with the solar irradiance at different total gas flow, TCE concentration, and water vapour content. SiMgO(x) not only provides adsorbent properties to the photocatalyst, but it also allows the effective use of the material during low solar irradiance conditions. The adsorption-desorption phenomena play a pivotal role in the behaviour of the system. Thus, TCE conversion curves present two different branches when the sun irradiance increases (sunrise) or decreases (sunset). CO(2), COCl(2) and DCAC were the most relevant products detected. Meanwhile CO(2) concentration was insensitive to the branch analysed, COCl(2) or DCAC were not indicating the ability of these compounds to be adsorbed on the composite. An increase of the UV irradiation at total TCE conversion promotes the CO(2) selectivity. The excess of energy arriving to the reactor favours the direct reaction pathway to produce CO(2). The photonic efficiency, calculated as a function of the rate of CO(2) formation, decreases linearly with the solar irradiance up to around 2 mW cm(-2), where it becomes constant. For decontamination systems high TCE conversion is pursuit and then high solar irradiance values are required, in spite of lower photonic efficiency values. The present photocatalyst configuration, with only 17% of the reactor volume filled with the photoactive material, allows total TCE conversion for 150 ppm and 1 L min(-1) in a wide sun irradiance window from 2 to 4 mW cm(-2). The incorporation of water vapour leads to an increase of the CO(2) selectivity keeping the TCE conversion around 90%, although significant amounts of COCl(2) were observed. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Summary Background  The dose-response between ultraviolet (UV) exposure patterns and skin cancer occurrence is not fully understood. Sun-protection messages often focus on acute exposure, implicitly assuming that direct UV radiation is the key contributor to the overall UV exposure. However, little is known about the relative contribution of the direct, diffuse and reflected radiation components. Objective  To investigate solar UV exposure patterns at different body sites with respect to the relative contribution of the direct, diffuse and reflected radiation. Methods  A three-dimensional numerical model was used to assess exposure doses for various body parts and exposure scenarios of a standing individual (static and dynamic postures). The model was fed with erythemally weighted ground irradiance data for the year 2009 in Payerne, Switzerland. A year-round daily exposure (08:00-17:00 h) without protection was assumed. Results  For most anatomical sites, mean daily doses were high (typically 6·2-14·6 standard erythemal doses) and exceeded the recommended exposure values. Direct exposure was important during specific periods (e.g. midday during summer), but contributed moderately to the annual dose, ranging from 15% to 24% for vertical and horizontal body parts, respectively. Diffuse irradiation explained about 80% of the cumulative annual exposure dose. Acute diffuse exposures were also observed during cloudy summer days. Conclusions  The importance of diffuse UV radiation should not be underestimated when advocating preventive measures. Messages focused on avoiding acute direct exposures may be of limited efficiency to prevent skin cancers associated with chronic exposure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural differences between cerrado species with different leaf phenologies are linked to crown architecture, leaf production, and biomass allocation to shoots and leaves. The present study characterized crown structures and the patterns of biomass allocation to leaves and shoots in two woody cerrado species with contrasting leaf phenologies and quantified the irradiance reaching their leaves to determine the best period during the day for photosynthetic activity. The shoots and leaves of five individuals of both Annona coriacea (deciduous) and Hymenaea stigonocarpa (evergreen) were collected along a 50 m transect in a cerrado fragment within the urban perimeter of Catalão - GO, to determine their patterns of biomass allocation in their crowns. The evergreen H. stigonocarpa had significantly higher mean values of shoot inclination (SI), petiole length (PL), leaf area (LA), leaf display index (LDI), and individual leaf area per shoot (ILA), while the deciduous species A. coriacea had significantly higher leaf numbers (LN). The more complex crown of H. stigonocarpa had shoots in more erect positions (orthotropic), with intense self-shading within shoots; A. coriacea, on the other hand, had slanting (plagiotropic) shoots in the crown, allowing similar irradiance levels to all leaf surfaces. The production of plagiotropic shoots by the deciduous species (A. coriacea) is a strategy that enables its use of incident sunlight early in the morning and preventing excessive water loss or excessive irradiance. Hymenaea stigonocarpa (an evergreen), by contrast, had orthotropic shoots and uses intense self-shading as a strategy to avoid excessive irradiance, especially at midday. Differences in crown architectures between evergreen and deciduous species of cerrado sensu stricto can therefore be viewed as adaptations to the environmental light regime.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describe a simulation program, which uses Trengenza’s average room illuminance method in conjunction with hourly solar irradiance and luminous efficacy, to predict the potential lighting energy saving for a side-lit room. Two lighting control algorithms of photoelectric switching (on/off) and photoelectric dimming (top-up) have been coded in the program. A simulation for a typical UK office room has been conducted and the results show that energy saving due to the sunlight dependent on the various factors such as orientation, control methods, building depth, glazing area and shading types, etc. This simple tool can be used for estimating the potential lighting energy saving of the windows with various shading devices at the early design stage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocimum gratissimum seed germination (% germination and vigor) has been found as phytochrome dependent, having a typical High Irradiant Response (HIR). Seven treatments were tested: daylight (DL), red (R), far-red (FR), blue (B), green (G), dark (DK), and reversible (RVB). No statistical difference among the DL, R, FR, B, and G were found. DK and RVB were statistically equal and presented the lowest results. The germination also occurred in the DK treatment but in non-useful rates, and it was nonreversible in the RVB treatment. It allows these seeds to be classified as positively photoblastic. The minimum energy need to initiate the germination was evaluated by a fluency-response curve. It plotted four different exposition times to R light (1 second, 60 seconds, 1 hour, and 13 hours) against percent germination. Useful germination occurred only after 1 hour, confirming the high energy needed to incite the process. The germination rate increased with the raise of the photoequilibrium (j). The high positive correlation index found confirms the phytochrome influence in this process. Facing all the results presented here, it is suggested to sow these seeds under direct and highly intense sunlight. It is preferable to avoid places exposed to variations in the shading, because inhibition induced by dense shade effects (low R/FR ration and consequently low j established) were demonstrated irreversible, and it can lead to undesirable loss of the germination power.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leaves of the subtropical understorey shrub Schefflera arboricola Hayata growing in full sunlight had higher specific leaf weight, higher chlorophyll a/b ratios, lower total chlorophyll content and a threefold higher xanthophyll cycle pigment content than leaves growing in a naturally shaded, but sunfleck-punctuated, environment. A number of measurements, all made in situ and during natural day/night cycles, were taken as follows: current photochemical capacity (F-v/F-m after 10 min dark-adaptation), size and epoxidation state of the xanthophyll cycle, CO2 gas exchange and determination of the D1 synthesis rate. In sun leaves the lowest daily F-v/F-m was found to be approximately 0.6, the change from maximum correlating with an increase in zeaxanthin. Daily changes in zeaxanthin were partly due to de novo synthesis and turnover. We suggest that sun leaves can dissipate most of the excess light energy absorbed safely via the photoprotective xanthophyll cycle. D1 synthesis rates did not correlate with photosynthetic photon flux density or F-v/F-m. The shade leaves had high F-v/F-m values and constant photosynthetic rates throughout the day except during sunflecks, when photosynthetic rates increased and D1 synthesis accelerated, all without a substantial decrease in F-v/F-m. It seems that leaves of S. arboricola adapted to natural shade conditions can use sunflecks to contribute significantly to their productivity. The third leaf type investigated was from greenhouse-grown plants of S. arboricola after exposure to full sunlight. These leaves showed a rapid and large reduction in F-v/F-m (to 0.3), which neither correlated with zeaxanthin formation nor recovered within the same day. From long-term effects following full sunlight exposure of greenhouse-grown plants we suggest that this F-v/F-m reduction actually reflects photodestruction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate the ability of pioneer and late-successional species to adapt to a strong light environment in a reforestation area, we examined the activities of antioxidant enzymes in relation to photosystem chlorophyll a fluorescence and photosynthetic pigment concentration for eight tropical tree species grown under 100% (sun) and 10% (shade) sunlight irradiation. The pioneer (early-succession) species (PS) were Cecropia pachystachya, Croton urucurana, Croton floribundus and Schinus terebinthifolius. The non-pioneer (late succession) species (LS) were Hymenaea courbaril L var. stilbocarpa, Esenbeckia leiocarpa, Cariniana legalis and Tabebuia roseo-alba. We observed a greater decline in the ratio of variable to maximum chlorophyll a fluorescence (F(v)/F(m)) under full sunlight irradiation in the late-successional species than in the pioneer species. The LS species most sensitive to high irradiance were C. legalis and H. courbaril. In LS species, chlorophyll a, chlorophyll b and total chlorophyll concentrations were higher in the shade-grown plants than in plants that developed under full sunlight, but in the PS species C. floribundus and C. pachystachya, we did not observe significant changes in chlorophyll content when grown in the two contrasting environments. The carotenoids/total chlorophyll ratio increased significantly when plants developed under high-sunlight irradiation, but this response was not observed in the PS species S. terebinthifolius and C. pachystachya. The improved performance of the pioneer species in high sunlight was accompanied by an increase in superoxide dismutase (SOD. EC 1.15.1.1) activity, though no light-dependent increase in the activity of ascorbate peroxidase (APX. EC 1.11.1.11) was observed. The activity of catalase (CAT, EC 1.11.1.6) was reduced by high irradiation in both pioneer and late-successional species. Our results show that pioneer species perform better under high-sunlight irradiation than late-successional species, as indicated by increased SOD activity and a higher F IF,, ratio. C. legalis was the LS species most susceptible to photoinhibition under full sunlight conditions. These results suggest that pioneer plants have more potential tolerance to photo-oxidative damage than late-successional species associated with the higher SOD activity found in pioneer species. Reduced photoinhibition in pioneer species probably results from their higher photosynthetic capacities, as has been observed in a previous survey carried out by our group. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epilepsy is the most common serious neurological condition and sudden unexpected death in epilepsy (SUDEP) is the most important direct epilepsy-related cause of death. information concerning risk factors for SUDEP is conflicting, but high seizure frequency is a potential risk factor. Additionally, potential pathomechanisms for SUDEP are unknown, but it is very probable that cardiac arrhythmias during and between seizures or transmission of epileptic activity to the heart via the autonomic nervous system potentially play a role. In parallel, studies have shown a link between vitamin D dysfunction and epilepsy. Moreover, several evidences in the literature suggest an association between low vitamin D and seizures, indicating the possibility of anticonvulsant properties of this hormone. Quite interesting, a growing body of data suggests that low vitamin D levels may adversely affect cardiovascular health, directly associated with death from heart failure and sudden cardiac death. In view of the above findings, our research group focused in this review article that SUDEP, at least in some cases, could be related with low vitamin D levels. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photochemical efficiency of symbiotic dinoflagellates within the tissues of two reef-building corals in response to normal and excess irradiance at wafer temperatures < 30 C were investigated using pulse amplitude modulated (PAM) chlorophyll fluorescence techniques, Dark-adapted F-v/F-m showed clear diurnal changes, decreasing to a low at solar noon and increasing in the afternoon. However, F-v/F-m also drifted downwards at night or in prolonged darkness, and increased rapidly during the early morning twilight. This parameter also increased when the oxygen concentration of the wafer holding the corals was increased. Such changes have not been described previously, and most probably reflect state transition's associated with PQ pool reduction via chlororespiration. These unusual characteristics may be a feature of an endosymbiotic environment, reflective of the well-documented night-time tissue hypoxia that occurs in corals. F-v/F-m decreased to 0.25 in response to full sunlight in shade-acclimated (shade) colonies of Stylophora pistillata, which is considerably lower than in light-acclimated (sun) colonies. In sun colonies, the reversible decrease in F-v/F-m was caused by a lowering of F-m and F-o suggesting photoprotection and no lasting damage. The decrease in F-v/F-m, however, was caused by a decrease in F-m and an increase in F-o in shade colonies suggesting photoinactivation and long-term cumulative photoinhibition. Shade colonies rapidly lost their symbiotic algae (bleached) during exposure to full sunlight. This study is consistent with the hypothesis that excess light leads to chronic damage of symbiotic dinoflagellates and their eventual removal from reef-building corals. It is significant that this can occur with high light conditions alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Caustis blakei is an attractive cut foliage plant harvested from the wild in Australia and marketed under the name of koala fern. Previous attempts to propagate large numbers of this plant have been unsuccessful. The effect of four light irradiances on organogenesis from compact and friable callus of C. blakei was studied for 21 wk. Both callus types produced numerous primordial shoots but many failed to develop into green plantlets. However, significantly more primordial shoots and green plantlets developed on the friable callus than on the compact callus, and significantly more green plantlets were regenerated under the higher photon irradiances of 200 and 300 mumol m(-2) s(-1) than under the lower irradiances of 100 and 150 mumol m(-2) s(-1). The compact callus produced its maximum number of green plantlets early in the experiment (after 9 wk), while the friable callus continued to produce primordial shoots and green plantlets throughout the period of the experiment, and reached its maximum production of green plantlets at 21 wk under the irradiance of 300 mumol m(-2) s(-1). Organogenesis from friable callus under high irradiance (300 mumol m(-2) s(-1)) offers an efficient propagation method for C. blakei.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Expression of metallothionein, an antioxidant induced by a variety of stimuli including ultraviolet light, was quantitated by immunohistochemistry in the skin of males aged over 50 who had known short- and long-term exposures to sunlight. Skin punch biopsies were taken from two sites in each subject: the hand in all subjects and a range of other sites matched to patients with a previously excised primary melanoma. Metallothionein expression (strongest in the basal layers of the epidermis and primarily nuclear) was associated with both short- and long-term exposure to sunlight. A plateau of staining intensity was reached after 3 h sun exposure, within the previous 3 d before biopsy. Expression was also elevated in the nonexposed skin sites of subjects who had recent sun exposure, indicating a systemic response to exposure of remote sites. Using the skin of the hand to normalize responses to chronic exposure between individuals, the systemically modulated response to sunlight was significantly greater on the unexposed back than on other sites. The possibility of ultraviolet-induced cytokines selectively modifying the response of skin on a site-specific basis was investigated. The circulating leukocytes, but not lymphocytes, of two individuals exposed to 1 minimal erythema dose whole-body solar-simulated ultraviolet showed increased interleukin-6 mRNA 4 h after exposure. Interleukin-6 was not directly induced in these cell populations 4 h after ultraviolet A or ultraviolet B irradiation ex vivo . Leukocytes may therefore contribute to and amplify the systemic effects of ultraviolet-induced interleukin-6 and metallothionein expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light and water are important factors that may limit the growth and development of higher plants. The aim of this study was to evaluate photosynthetic parameters and growth in seedlings of Bertholletia excelsa and Carapa guianensis in response to pre-acclimation to full sunlight and mild water stress. I used six independent pre-acclimation treatments (0, 90 (11h15-12h45), 180 (10h30-13h30), 360 (09h00-15h00), 540 (07h30-16h30) and 720 min (06h00-18h00)) varying the time of exposure to full sunlight (PFS) during 30 days, followed by whole-day outdoor exposure for 120 days. Before PFS, the plants were kept in a greenhouse at low light levels (0.8 mol m-2 day-1). The PFS of 0 min corresponded to plants constantly kept under greenhouse conditions. From the beginning to the end of the experiment, each PFS treatment was submitted to two water regimes: moderate water stress (MWS, pre-dawn leaf water potential (ΨL) of -500 to -700 kPa) and without water stress (WWS, ΨL of -300 kPa, soil kept at field capacity). Plants under MWS received only a fraction of the amount of water applied to the well-watered ones. At the end of the 120-day-period under outdoor conditions, I evaluated light saturated photosynthesis (Amax), stomatal conductance (g s), transpiration (E) and plant growth. Both Amax and g s were higher for all plants under the PFS treatment. Stem diameter growth rate and Amax were higher for C. guianensis subjected to MWS than in well-watered plants. The contrary was true for B. excelsa. The growth of seedlings was enhanced by exposure to full sunlight for 180 minutes in both species. However, plants of B. excelsa were sensitive to moderate water stress. The higher photosynthetic rates and faster growth of C. guianensis under full sun and moderate water stress make this species a promissory candidate to be tested in reforestation programs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El creciente desarrollo de la industria del cuero y textil en nuestro país, y específicamente en la provincia de Córdoba, ha hecho resurgir en los ultimos años una problemática aún no resuelta que es la elevada contaminación de los recursos hídricos. En ambas industrias, la operación de teñido involucra principalmente colorantes de tipo azoico los cuales son "no biodegradables" y se fragmentan liberando aminas aromáticas cancerígenas. Para abordar esta problemática, la fotocatálisis heterogénea aparece como una nueva tecnología que permitiría la completa mineralización de estos colorantes. A través de radiación y un fotocatalizador sólido adecuado se pueden generan radicales libres eficientes para la oxidación de materia orgánica (colorantes) en medio acuoso. En este sentido, se proponen tamices moleculares mesoporosos modificados con metales de transición (MT) como fotocatalizadores potencialmente aptos para la degradación de estos contaminantes. El propósito principal de este proyecto es el diseño, síntesis, caracterización y evaluación de materiales mesoporosos que presenten actividad fotocatalítica ya sea mediante la modificación de su estructura con diversos metales fotosensibles y/o empleándolos como soporte de óxido de titanio. Se pretende evaluar estos materiales en la degradación de colorantes intentando desplazar su fotosensibilidad hacia la radiación visible para desarrollar nuevas tecnologías con menor impacto ambiental y mayor aprovechamiento de la energía solar. Para ello se sintetizarán materiales del tipo MCM-41 modificados con distintos MT tales como Fe, Cr, Co, Ni y Zn mediante incorporación directa del ión metálico o impregnación. Al mismo tiempo, tanto estos últimos materiales como el MCM-41 silíceo serán empleados como soporte de TiO2. Sus propiedades fisicoquímicas se caracterizarán mediante distintas técnicas instrumentales y su actividad fotocatalítica se evaluará en la degradación de colorantes azoicos bajo radiación visible. Se seleccionará el catalizador más eficiente y se estudiarán los diversos factores que afectan el proceso de fotodegradación. Así mismo, el análisis de la concentración del colorante y los productos presentes en el medio en función del tiempo de reacción permitirá inferir sobre la cinética de la decoloración y postular posibles mecanismos de fotodegradación. Con esta propuesta se espera contribuír al desarrollo de un sector industrial importante en nuestra provincia como es el de las industrias del cuero y textil, mediante la generación de nuevas tecnologías que empleen la energía solar para la degradación de sus efluentes (colorantes). En este sentido, se espera desarrollar nuevos materiales optimizados para lograr la mayor eficiencia fotocatalítica. Esto conduciría entonces hacia la remediación de un problema ambiental de alto impacto tanto para nuestra provincia y nuestro país como para la población mundial, como es la contaminación de los recursos hídricos. Finalmente, con este proyecto se contribuirá a la formación de dos doctorandos y un maestrando, cuyos temas de tesis están vinculados con nuestro objeto de estudio. The increasing development of the textile and leather industries in our country, and specifically in Córdoba, has revived an unresolved problem that is the high contamination of water resources. In both industries, the dyeing involves mainly type azoic dyes which are not biodegradable and break releasing carcinogenic aromatic amines. Heterogeneous photocatalysis appears as a new technology that would allow the complete mineralization of these pollutants. Through radiation and a suitable solid it is possible to generate free radicals for efficient oxidation of organic matter (dyes) in aqueous medium. In this respect, mesoporous molecular sieves modified with transition metals are proposed as potential photocatalysts. The main purpose of this project is the synthesis of mesoporous materials having photocatalytic activity for the degradation of dyes. We will try to move their photosensitivity to visible radiation to develop new technologies with lower environmental impact and greater use of solar energy. Materials MCM-41 modified with metals (Fe, Cr, Co, Ni and Zn) will be synthesized by direct incorporation or impregnation. These materials and the siliceous MCM-41 will be then employed as support of TiO2. The materials will be evaluated in the photocatalytic degradation of azoic dyes under visible radiation. The influence of different factors on the photodegradation proccess will be studied. Kinetic studies will be carried out and a possible reaction way will be proposed. Thus, this work will contribute to the advancement of an important industrial sector and the remediation of an environmental problem with high impact for our province and our country. Moreover, this proyect will contribute to the development of two doctoral tesis and one magister tesis which are vinculated with our study subject.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Excessive exposure to solar ultraviolet (UV) is the main cause of skin cancer. Specific prevention should be further developed to target overexposed or highly vulnerable populations. A better characterisation of anatomical UV exposure patterns is however needed for specific prevention. To develop a regression model for predicting the UV exposure ratio (ER, ratio between the anatomical dose and the corresponding ground level dose) for each body site without requiring individual measurements. A 3D numeric model (SimUVEx) was used to compute ER for various body sites and postures. A multiple fractional polynomial regression analysis was performed to identify predictors of ER. The regression model used simulation data and its performance was tested on an independent data set. Two input variables were sufficient to explain ER: the cosine of the maximal daily solar zenith angle and the fraction of the sky visible from the body site. The regression model was in good agreement with the simulated data ER (R(2)=0.988). Relative errors up to +20% and -10% were found in daily doses predictions, whereas an average relative error of only 2.4% (-0.03% to 5.4%) was found in yearly dose predictions. The regression model predicts accurately ER and UV doses on the basis of readily available data such as global UV erythemal irradiance measured at ground surface stations or inferred from satellite information. It renders the development of exposure data on a wide temporal and geographical scale possible and opens broad perspectives for epidemiological studies and skin cancer prevention.