963 resultados para Si-GaAs
Resumo:
The efficiency of a Laue lens for X and Gamma ray focusing in the energy range 60 ÷ 600 keV is closely linked to the diffraction efficiency of the single crystals composing the lens. A powerful focusing system is crucial for applications like medical imaging and X ray astronomy where wide beams must be focused. Mosaic crystals with a high density, such as Cu or Au, and bent crystals with curved diffracting planes (CDP) are considered for the realization of a focusing system for X rays, owing to their high diffraction efficiency. In this work, a comparison of the efficiency of CDP crystals and mosaic crystals was performed on the basis of the theory of X-ray diffraction. Si, GaAs and Ge CDP crystals with optimized thicknesses and moderate radii of curvature of several tens of metres demonstrate comparable or superior performance with respect to the higher atomic number mosaic crystals generally used. A simplified approach for calculating the integrated reflectivity of the crystals is applied. A bending technique used during this work to realize CDP crystals consists in a controlled surface damaging induced by a mechanical lapping process. A compressive strained layer of few micrometres in thickness is generated and causes the convex curvature of the damaged side of the crystal. Another new bending technique is developed and the main results are shown. The process consists on a film deposition of a selected bi-component epoxy resin on one side of crystal, made uniform in thickness by mean of a spin-coater. Choosing the speed of spin-coating, so changing the thickness of the film, a control of radius of curvature can be obtained. Moreover the possibility to combine the two bending technique to obtain CDP crystal with a stronger curvature in rather thick crystals was demonstrated. Detailed characterization of Si, and GaAs CDP crystals at low and high x-ray energies are performed on flat and bent crystals obtained with the damaging and the resin deposition technique. As expected an increase of diffraction efficiency in asymmetrical diffraction geometry in CDP crystals with respect to the flat ones is observed. On the other hand an unexpected increase of the integrated intensity in symmetrical geometry, not predicted by the theory, is observed in all the measurements performed with different set up. The experimental trend of the integrated reflectivity as a function of the radius of curvature is in a good agreement with that predicted by the theory of bent perfect crystals, so it is possible to conclude that the surface damage has a limited effect on the crystal reflectivity. A study of the integrated reflectivity in the energy range of interest (100÷350 keV) in CDP crystals realized with damaging and resin deposition technique at symmetrical and asymmetrical geometries was performed at ILL Institute. Also at these energies the diffraction efficiency of bent crystals was much larger (a 12 time increase is observed for bent crystals in asymmetrical 111 geometry) than that measured in flat crystals. The diffraction efficiency of CDP crystals realized with both techniques tends to coincide with that of flat crystals at very high energies (> 200 keV). This suggesting that also real flat perfect crystals can be considered as strongly bent or mosaic crystals at very high X ray energies.
Resumo:
Epitaxial Fe/MgO heterostructures have been grown on Si(001) by a combination of sputtering and laser ablation deposition techniques. The growth of MgO on Si(001) is mainly determined by the nature of the interface, with large lattice mismatch and the presence of an amorphous layer of unclear origin. Reflection high energy electron diffraction patterns of this MgO buffer layer are characteristic of an epitaxial, but disordered, structure. The structural quality of subsequent Fe and MgO layers continuously improves due to the better lattice match and the burial of defects. A weak uniaxial in-plane magnetic anisotropy is found superimposed on the expected cubic biaxial anisotropy. This additional anisotropy, of interfacial nature and often found in Fe/MgO and Fe/MgO/GaAs(001) systems, is less intense here due to the poorer MgO/Si interface quality compared with that of other systems. From the evolution of the anisotropy field with film thickness, magnetic anisotropy is also found to depend on the crystal quality. Kerr measurements of a Fe/MgO multilayered structure grown on Si show two different switching fields, suggesting magnetic coupling of two of the three Fe layers. Nevertheless, due to the little sensitivity to the bottom Fe film, independent switching of the three layers cannot be ruled out.
Resumo:
In this paper, we report the in-plane and cross-plane measurements of the thermal diffusivity of double epitaxial layers of n-type GaAs doped with various concentrations of Si and a p-type Be-doped GaAs layer grown on a GaAs substrate by the molecular beam epitaxial method, using the laser-induced nondestructive photothermal deflection technique. The thermal diffusivity value is evaluated from the slope of the graph of the phase of the photothermal deflection signal as a function of pump-probe offset. Analysis of the data shows that the cross-plane thermal diffusivity is less than that of the in-plane thermal diffusivity. It is also seen that the doping concentration has a great influence on the thermal diffusivity value. Measurement of p-type Be-doped samples shows that the nature of the dopant also influences the effective thermal diffusivity value. The results are interpreted in terms of a phonon-assisted heat transfer mechanism and the various scattering process involved in the propagation of phonons.
Resumo:
In this paper, we report the in-plane and cross-plane measurements of the thermal diffusivity of double epitaxial layers of n-type GaAs doped with various concentrations of Si and a p-type Be-doped GaAs layer grown on a GaAs substrate by the molecular beam epitaxial method, using the laser-induced nondestructive photothermal deflection technique. The thermal diffusivity value is evaluated from the slope of the graph of the phase of the photothermal deflection signal as a function of pump-probe offset. Analysis of the data shows that the cross-plane thermal diffusivity is less than that of the in-plane thermal diffusivity. It is also seen that the doping concentration has a great influence on the thermal diffusivity value. Measurement of p-type Be-doped samples shows that the nature of the dopant also influences the effective thermal diffusivity value. The results are interpreted in terms of a phonon-assisted heat transfer mechanism and the various scattering process involved in the propagation of phonons
Resumo:
In this paper, we report the in-plane and cross-plane measurements of the thermal diffusivity of double epitaxial layers of n-type GaAs doped with various concentrations of Si and a p-type Be-doped GaAs layer grown on a GaAs substrate by the molecular beam epitaxial method, using the laser-induced nondestructive photothermal deflection technique. The thermal diffusivity value is evaluated from the slope of the graph of the phase of the photothermal deflection signal as a function of pump-probe offset. Analysis of the data shows that the cross-plane thermal diffusivity is less than that of the in-plane thermal diffusivity. It is also seen that the doping concentration has a great influence on the thermal diffusivity value. Measurement of p-type Be-doped samples shows that the nature of the dopant also influences the effective thermal diffusivity value. The results are interpreted in terms of a phonon-assisted heat transfer mechanism and the various scattering process involved in the propagation of phonons
Resumo:
We report a photoacoustic (PA) study of the thermal and transport properties of a GaAs epitaxial layer doped with Si at varying doping concentration, grown on GaAs substrate by molecular beam epitaxy. The data are analyzed on the basis of Rosencwaig and Gersho’s theory of the PA effect. The amplitude of the PA signal gives information about various heat generation mechanisms in semiconductors. The experimental data obtained from the measurement of the PA signal as a function of modulation frequency in a heat transmission configuration were fitted with the phase of PA signal obtained from the theoretical model evaluated by considering four parameters—viz., thermal diffusivity, diffusion coefficient, nonradiative recombination time, and surface recombination velocity—as adjustable parameters. It is seen from the analysis that the photoacoustic technique is sensitive to the changes in the surface states depend on the doping concentration. The study demonstrates the effectiveness of the photoacoustic technique as a noninvasive and nondestructive method to measure and evaluate the thermal and transport properties of epitaxial layers.
Resumo:
This work reports changes in structural properties produced by thermal annealing of flash evaporated amorphous GaAs films using the micro-Raman scattering and the X-ray diffraction (XRD) techniques. Films of about 1 μm were grown on c-Si and glass substrates. The crystallization process is less effective for samples deposited on c-Si. This could be due to the ordering in the first layers of the film imposed by the oriented Si substrates. We propose that this ordering makes the growth of crystallites in these films more restrained than the growth occurring in the completely amorphous films on glass substrates. © 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
The metallization stack Ti/Pd/Ag on n-type Si has been readily used in solar cells due to its low metal/semiconductor specific contact resistance, very high sheet conductance, bondability, long-term durability, and cost-effectiveness. In this study, the use of Ti/Pd/Ag metallization on n-type GaAs is examined, targeting electronic devices that need to handle high current densities and with grid-like contacts with limited surface coverage (i.e., solar cells, lasers, or light emitting diodes). Ti/Pd/Ag (50 nm/50 nm/1000 nm) metal layers were deposited on n-type GaAs by electron beam evaporation and the contact quality was assessed for different doping levels (from 1.3 × 1018 cm−3 to 1.6 × 1019 cm−3) and annealing temperatures (from 300°C to 750°C). The metal/semiconductor specific contact resistance, metal resistivity, and the morphology of the contacts were studied. The results show that samples doped in the range of 1018 cm−3 had Schottky-like I–V characteristics and only samples doped 1.6 × 1019 cm−3 exhibited ohmic behavior even before annealing. For the ohmic contacts, increasing annealing temperature causes a decrease in the specific contact resistance (ρ c,Ti/Pd/Ag ~ 5 × 10−4 Ω cm2). In regard to the metal resistivity, Ti/Pd/Ag metallization presents a very good metal conductivity for samples treated below 500°C (ρ M,Ti/Pd/Ag ~ 2.3 × 10−6 Ω cm); however, for samples treated at 750°C, metal resistivity is strongly degraded due to morphological degradation and contamination in the silver overlayer. As compared to the classic AuGe/Ni/Au metal system, the Ti/Pd/Ag system shows higher metal/semiconductor specific contact resistance and one order of magnitude lower metal resistivity.
Resumo:
Highly lattice mismatched (7.8%) GaAs/GaSb nanowire heterostructures were grown by metal-organic chemical vapor deposition and their detailed structural characteristics were determined by electron microscopy. The facts that (i) no defects have been found in GaSb and its interfaces with GaAs and (ii) the lattice mismatch between GaSb/GaAs was fully relaxed suggest that the growth of GaSb nanowires is purely governed by the thermodynamics. The authors believe that the low growth rate of GaSb nanowires leads to the equilibrium growth. (c) 2006 American Institute of Physics.
Resumo:
The article presents studies of a current investigation among 75 adolescents from 12 to 15 years old, students of private schools of Campinas city, that have as main objective to notice a possible correspondence among the moral judgments and the representation that individuals have about themselves. From a questionnaire, the studies bring out the representations of these individuals and answer a questioning if they would have an ethical character or not and if these individuals would correspond to their moral judgments. The results point out to a correspondence among those whose self representations are characterized by more evolved ethical contents and judgments related to sensitivity and to the characters feelings involved in the situations described. Such studies validate the intention of this article to discuss the correspondences between ethics (how the individual sees himself/herself) and moral (how he/she judges the situations moral).
Resumo:
Universidade Estadual de Campinas. Faculdade de Educação Física
Resumo:
In this work we report on a comparison of some theoretical models usually used to fit the dependence on temperature of the fundamental energy gap of semiconductor materials. We used in our investigations the theoretical models of Viña, Pässler-p and Pässler-ρ to fit several sets of experimental data, available in the literature for the energy gap of GaAs in the temperature range from 12 to 974 K. Performing several fittings for different values of the upper limit of the analyzed temperature range (Tmax), we were able to follow in a systematic way the evolution of the fitting parameters up to the limit of high temperatures and make a comparison between the zero-point values obtained from the different models by extrapolating the linear dependence of the gaps at high T to T = 0 K and that determined by the dependence of the gap on isotope mass. Using experimental data measured by absorption spectroscopy, we observed the non-linear behavior of Eg(T) of GaAs for T > ΘD.
Resumo:
Ti-base alloys containing significant amounts of silicon have been considered for high temperature structural applications. Thus, information concerning phase stability on the Ti-Si system is fundamental and there are not many investigations covering the phase stability of the Ti(3)Si phase, specially its dependence on oxygen/nitrogen contamination. In this work the stability of this phase has been evaluated through heat-treatment of rapidly solidified Ti-rich Ti-Si alloys at 700 A degrees C and 1000 A degrees C. The rapidly solidified splats presented nanometric scale microstructures which facilitated the attainment of equilibrium conditions. The destabilization of Ti(3)Si due to oxygen/nitrogen contamination has been noted.