752 resultados para Shoulder harnesses.
Resumo:
Mode of access: Internet.
Resumo:
Federal Aviation Administration, Office of Aviation Medicine, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
Mode of access: Internet.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
Shoulder joint is a complex integration of soft and hard tissues. It plays an important role in performing daily activities and can be considered as a perfect compromise between mobility and stability. However, shoulder is vulnerable to complications such as dislocations and osteoarthritis. Finite element (FE) models have been developed to understand shoulder injury mechanisms, implications of disease on shoulder complex and in assessing the quality of shoulder implants. Further, although few, Finite element shoulder models have also been utilized to answer important clinical questions such as the difference between a normal and osteoarthritic shoulder joint. However, due to the absence of experimental validation, it is questionable whether the constitutive models applied in these FE models are adequate to represent mechanical behaviors of shoulder elements (Cartilages, Ligaments, Muscles etc), therefore the confidence of using current models in answering clinically relevant question. The main objective of this review is to critically evaluate the existing FE shoulder models that have been used to investigate clinical problems. Due concern is given to check the adequacy of representative constitutive models of shoulder elements in drawing clinically relevant conclusion. Suggestions have been given to improve the existing shoulder models by inclusion of adequate constitutive models for shoulder elements to confidently answer clinically relevant questions.
Resumo:
A review of radiographers was undertaken to determine the specific projections currently performed for patients with acute presentation for shoulder trauma. Radiographers were asked to indicate projections they would perform for specific patient presentations. This poster presents a snapshot of the diversity of projections performed and a review of the current evidence of the most appropriate projections
Resumo:
While Magentic Resonance Imaging and Ultrasound are used extensively for non-acute shoulder imaging, plain images are regularly required as a first investigation. This paper presents a snapshot of the diversity of projections performed and a review of the current evidence of the most appropriate projections. The projections recommended are suitable as a first investigation, and also to complement more advanced imaging.
Resumo:
Non-linear finite deformations of articular cartilages under physiological loading conditions can be attributed to hyperelastic behavior. This paper contains experimental results of indentation tests in finite deformation and proposes an empirical based new generalized hyperelastic constitutive model to account for strain-rate dependency for humeral head cartilage tissues. The generalized model is based on existing hyperelastic constitutive relationships that are extensively used to represent biological tissues in biomechanical literature. The experimental results were obtained for three loading velocities, corresponding to low (1x10-3 s-1), moderate and high strain-rates (1x10-1 s-1), which represent physiological loading rates that are experienced in daily activities such as lifting, holding objects and sporting activities. Hyperelastic material parameters were identified by non linear curve fitting procedure. Analysis demonstrated that the material behavior of cartilage can be effectively decoupled into strain-rate independent(elastic) and dependent parts. Further, experiments conducted using different indenters indicated that the parameters obtained are significantly affected by the indenter size, potentially due to structural inhomogeneity of the tissue. The hyperelastic constitutive model developed in this paper opens a new avenue for the exploration of material properties of cartilage tissues.
Resumo:
Background: The Simple Shoulder Test (SST-Sp) is a widely used outcome measure. Objective: The purpose of this study was to develop and validate a Spanish-version SST (SST-Sp). Methods: A two-stage observational study was conducted. The SST was initially cross-culturally adapted to Spanish through double forward and backward translation and then validated for its psychometric characteristics. Participants (n = 66) with several shoulder disorders completed the SST-Sp, DASH, VAS and SF-12. The full sample was employed to determine factor structure, internal consistency and concurrent criterion validity. Reliability was determined in the first 24–48 h in a subsample of 21 patients. Results: The SST-Sp showed three factors that explained the 56.1 % of variance, and the internal consistency for each factor was α = 0.738, 0.723 and 0.667, and reliability was ICC = 0.687–0.944. The factor structure was three-dimensional and supported construct validity. Criterion validity determined from the relationship between the SST-Sp and DASH was strong (r = −0.73; p < 0.001) and fair for VAS (r = −0.537; p < 0.001). Relationships between SST-Sp and SF-12 were weak for both physical (r = −0.47; p < 0.001) and mental (r = −0.43; p < 0.001) dimensions. Conclusions: The SST-Sp supports the findings of the original English version as being a valid shoulder outcome measure with similar psychometric properties to the original English version.
Resumo:
Due to anatomical and biomechanical similarities to human shoulder, kangaroo was chosen as a model to study shoulder cartilage. Comprehensive enzymatic degradation and indentation tests were applied on kangaroo shoulder cartilage to study mechanisms underlying its strain-rate-dependent mechanical behavior. We report that superficial collagen plays a more significant role than proteoglycans in facilitating strain-rate-dependent behavior of kangaroo shoulder cartilage. By comparing the mechanical properties of degraded and normal cartilages it was noted that proteoglycan and collagen degradation significantly compromised strain-rate-dependent mechanical behavior of the cartilage. Superficial collagen contributed equally to the tissue behavior at all strain-rates. This is different to studies reported on knee cartilage and confirms the importance of superficial collagen on shoulder cartilage mechanical behavior. A porohyperelastic numerical model also indicated that collagen disruption would lead to faster damage of the shoulder cartilage than when proteoglycans are depleted.