330 resultados para Shores.
Resumo:
ABSTRACT The Baltic Sea is a vulnerable ecosystem currently undergoing a number of changes, both natural and human induced. The changes are likely to affect the species found on these shores, e.g. their distribution and interactions with other species. Blue mussels (Mytilus trossulus x Mytilus edulis) provide one of the main biogenic hard structures on the shallow shores of the Baltic Sea where they aggregate into dense beds and provide a number of resources for over 40 associated macrofaunal species, thus functioning as ecosystem engineers. The blue mussel, being a marine species, is highly likely to be affected by any changes in sea water salinity, circulation and/or water balance. These changes could trickle down also to affect the associated macrofaunal communities. The aims of this thesis were three-fold: first, I examined and described the macrofaunal communities found within blue mussel patches since the fauna associated with mussel patches had never been described in the study area prior to this thesis. Second, I explored how changes in mussel density, size as well as patch size and shape would affect the mussel communities. Finally, I tested how general landscape theories derived from terrestrial studies function in blue mussel systems. Theories included the structural heterogeneity hypothesis, species-area relationships, edge effects and patch isolation effects. The work shows that blue mussels in the northern Baltic Sea have an indisputable function as diversity hotspots and that the faunal assemblages found in mussel patches are extremely rich and unique. Further on, it shows that changes in mussel biomass, size, patch size and amount of edge have the potential to alter the faunal assemblages and diversity within patches. Finally, it shows that although some landscape theories, such as the structural heterogeneity hypothesis, seem to apply also in blue mussel communities, others cannot be directly applied due to the different prevailing conditions in the study system. This is a pioneering work looking at diversity shaping processes on the rocky shores of the Gulf of Finland, making up over 40% of the total water basin. A focus on niche construction, positive facilitation effects and ecosystem engineering could provide new insights and methods for conservation biology, but before this can be done, we need to fully understand the circumstances under which a species becomes an ecosystem engineer and recognize the systems in which it functions.
Resumo:
This study presents the third post-nourishment survey (January 1989) results for the Sand Key Phase II beach nourishment project carried out in June, 1988. The monitoring program to this beach nourishment project is a joint effort between the University of South Florida and University of Florida. The field surveys include a total of 26 profiles, encompassing approximately 3 miles of shoreline extending from DNR R-96 to R-1ll. The total calculated volume loss of sand in the nourished segment (from R-99G to R-107) between the July 88 and January 89 surveys is 51,113 cubic yards, which is a loss about 9.7 percent of 529,150 cubic yards actually placed in the nourishment project. The total loss of sand computed in the entire survey area is 26,796 cubic yards, which is only 5.1 percent of the sand placed in the nourishment project. It is stressed that a part of these net volume reductions is due to the background erosion and not due to spreading losses induced by the nourishment project. (PDF contains 168 pages.)
Resumo:
In this study a total of 75 species were identified, from which 17 species, 9 genes and 6 families; belonged to Green Algae, 18 species, 7 genes and 4 families; belonged to Brown Algae, and 40 species, 18 genes and 11 families; belonged to Red Algae. From total times spent for sampling, it was determined that at lengeh harbor with 6 species, had the lowest diversity of green algae. The species diversity of brown algae at Michael location with 10 species each; had the highest, and Tahooneh location with 5 species; had the lowest species diversity. Species diversity of red algae at Michael location with 28 species; had the highest, and Sayeh Khosh location with 13 species; had the lowest diversity. From all locations where sampling took place, the highest species diversity regarding Time and Space for all three groups of algae; were associated to Late February (20th. Feb. ), and late March(20th. March). Coverage data of macroalgae and Ecological Evaluation Index indicate a high level of eutrophication for the Saieh khosh, and Bostaneh, They are classified as zones with a bad and poor ecological status. It has been proved that concentrations of biogenic elements and phytoplankton blooming are higher in these zones. The best values of the estimated metrics at Tahooneh and Michaeil could be explained with the good ecological conditions in that zone and the absence of pollution sources close to that transect . The values of abundance of macroalgae and Ecological Evaluation Index indicate a moderate ecological conditions for the Koohin, Lengeh and Chirooieh.
Resumo:
This research was carried out for recognizing Natural Flora Bacteria of oil pollution in the coasts of Queshm island. In The First steps, The coasts of this Island were scrutinized as a Field of research and For knowing whether oil stains exist or not. It gets obvious That southern coasts of Queshm have got oil pollution which is created by oil tankers which carry oil of Iran continental shelf. Them oil stains were sampled from to certain stations. In The First step, primary isolation of exisiting bacteria in every oil sample was done and then purification of each bacterium was carried out. Then each purified bacterium that has got strong, recognized, typic growth was enriched oil sample of T5 station. And Bacterium C4 (gram—negative coccobacillus) was chosen as the second priority From oil sample of TA station and Bacterium B1 (gram—positive coccus) was chosen as The third priority From oil sample of TI station. All The above mentioned bacteria were biochemically, physiologically and morphologically experimented For specking The species. According To The tests done and comparing with The tests done and comparing with the reference Berge y' s, bacterium A5 Pelongs to the species pseudomonas sp and becterium C4 belongs to the species Aeromonas sp and bacterium BI belongs to The species micrococcus sp. In The Last stage, bacterium with The First priority (TA5 pseudomonas sp) was used in the planned microcosm. The sake of optimum and adapting to Laboratory conditions Each enriched and purified bacterium was given a code for station and a code For itself . Then This bacterium was studied and it was proved that it has potentiality For using oil as a source of carbon. From oil samples of 10 stations, 30 various Colonies of bacterium were Isolated, of which 20 bacteria had the highest potentiality of growth. And the other bacteria that has no typic growth were omitted From being studied. Since all of These 20 bacterium are able to use oil, a bacterium with maximum rate of growth in the presence of crude oil and Lack of other hydrocarbonic sources and with The code A5 ( gram — negative Bacillus ) was chosen as First priority From The mentioned microcosm contains sea water , suspension oil degrading bacterium , crude oil, azote and various concentrations of carbon and Incubated in 30°` and shook 150 PRA1 According to the results , index oil degrading bacterium (pseudomonas sp) belongs oil sample of T5 stations (east of sheeb draz Gulf) which growth best and have the potentiality of degrading oil in 25 glli malas and 50 glli cheese water and with 5 gill urea .
Report on certain sediment shores in the Isles of Scilly. A report to the Nature Conservancy Council
Resumo:
An historical data set, collected in 1958 by Southward and Crisp, was used as a baseline for detecting change in the abundances of species in the rocky intertidal of Ireland. In 2003, the abundances of each of 27 species was assessed using the same methodologies (ACFOR [which stands for the categories: abundant, common, frequent, occasional and rare] abundance scales) at 63 shores examined in the historical study. Comparison of the ACFOR data over a 45-year period, between the historical survey and re-survey, showed statistically significant changes in the abundances of 12 of the 27 species examined. Two species (one classed as northern and one introduced) increased significantly in abundance while ten species (five classed as northern, one classed as southern and four broadly distributed) decreased in abundance. The possible reasons for the changes in species abundances were assessed not only in the context of anthropogenic effects, such as climate change and commercial exploitation, but also of operator error. The error or differences recorded among operators (i.e. research scientists) when assessing species abundance using ACFOR categories was quantified on four shores. Significant change detected in three of the 12 species fell within the margin of operator error. This effect of operator may have also contributed to the results of no change in the other 15 species between the two census periods. It was not possible to determine the effect of operator on our results, which can increase the occurrence of a false positive (Type 1) or of a false negative (Type 2) outcome