959 resultados para Sequence learning


Relevância:

100.00% 100.00%

Publicador:

Resumo:

How do the layered circuits of prefrontal and motor cortex carry out working memory storage, sequence learning, and voluntary sequential item selection and performance? A neural model called LIST PARSE is presented to explain and quantitatively simulate cognitive data about both immediate serial recall and free recall, including bowing of the serial position performance curves, error-type distributions, temporal limitations upon recall, and list length effects. The model also qualitatively explains cognitive effects related to attentional modulation, temporal grouping, variable presentation rates, phonemic similarity, presentation of non-words, word frequency/item familiarity and list strength, distracters and modality effects. In addition, the model quantitatively simulates neurophysiological data from the macaque prefrontal cortex obtained during sequential sensory-motor imitation and planned performance. The article further develops a theory concerning how the cerebral cortex works by showing how variations of the laminar circuits that have previously clarified how the visual cortex sees can also support cognitive processing of sequentially organized behaviors.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated infants' sensitivity to spatiotemporal structure. In Experiment 1, circles appeared in a statistically defined spatial pattern. At test 11-month-olds, but not 8-month-olds, looked longer at a novel spatial sequence. Experiment 2 presented different color/shape stimuli, but only the location sequence was violated during test; 8-month-olds preferred the novel spatial structure, but 5-month-olds did not. In Experiment 3, the locations but not color/shape pairings were constant at test; 5-month-olds showed a novelty preference. Experiment 4 examined "online learning": We recorded eye movements of 8-month-olds watching a spatiotemporal sequence. Saccade latencies to predictable locations decreased. We argue that temporal order statistics involving informative spatial relations become available to infants during the first year after birth, assisted by multiple cues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In four experiments we investigated whether incidental task sequence learning occurs when no instructional task cues are available (i.e. with univalent stimuli). We manipulated task sequence by presenting three simple binary-choice tasks (colour, form or letter case decisions) in regular repeated or random order. Participants were required to use the same two response keys for each of the tasks. We manipulated response sequence by ordering the stimuli so as to produce either a regular or a random order of left versus right-hand key presses. When sequencing in both, or either, separate stream (i.e. task sequence and/or response sequence) was changed to random, only those participants who had processed both sequences together showed evidence of sequence learning in terms of significant response time disruption (Experiments 1-3). This effect disappeared when the sequences were uncorrelated (Experiment 4). The results indicate that only the correlated integration of task sequence and response sequence produced a reliable incidental learning effect. As this effect depends on the predictable ordering of stimulus categories, it suggests that task sequence learning is perceptual rather than conceptual in nature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to investigate the role of the fronto–striatal system for implicit task sequence learning. We tested performance of patients with compromised functioning of the fronto–striatal loops, that is, patients with Parkinson's disease and patients with lesions in the ventromedial or dorsolateral prefrontal cortex. We also tested amnesic patients with lesions either to the basal forebrain/orbitofrontal cortex or to thalamic/medio-temporal regions. We used a task sequence learning paradigm involving the presentation of a sequence of categorical binary-choice decision tasks. After several blocks of training, the sequence, hidden in the order of tasks, was replaced by a pseudo-random sequence. Learning (i.e., sensitivity to the ordering) was assessed by measuring whether this change disrupted performance. Although all the patients were able to perform the decision tasks quite easily, those with lesions to the fronto–striatal loops (i.e., patients with Parkinson's disease, with lesions in the ventromedial or dorsolateral prefrontal cortex and those amnesic patients with lesions to the basal forebrain/orbitofrontal cortex) did not show any evidence of implicit task sequence learning. In contrast, those amnesic patients with lesions to thalamic/medio-temporal regions showed intact sequence learning. Together, these results indicate that the integrity of the fronto–striatal system is a prerequisite for implicit task sequence learning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Storing and recalling spiking sequences is a general problem the brain needs to solve. It is, however, unclear what type of biologically plausible learning rule is suited to learn a wide class of spatiotemporal activity patterns in a robust way. Here we consider a recurrent network of stochastic spiking neurons composed of both visible and hidden neurons. We derive a generic learning rule that is matched to the neural dynamics by minimizing an upper bound on the Kullback–Leibler divergence from the target distribution to the model distribution. The derived learning rule is consistent with spike-timing dependent plasticity in that a presynaptic spike preceding a postsynaptic spike elicits potentiation while otherwise depression emerges. Furthermore, the learning rule for synapses that target visible neurons can be matched to the recently proposed voltage-triplet rule. The learning rule for synapses that target hidden neurons is modulated by a global factor, which shares properties with astrocytes and gives rise to testable predictions.