990 resultados para Semisolid Structure Formation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Semisolid metal forming has now been accepted as a viable technology for production of components with complex shape and high integrity. The advantages of semisolid metal forming can only be achieved when the feedstock material has a non-dendritic semisolid structure. A controlled nucleation method has been developed to produce such structures for semisolid forming. By controlling grain nucleation and growth, fine-grained and non-dendritic microstructures that are suitable for semisolid casting can be generated. The method was applied to hypoeutectic and hypereutectic Al-Si casting alloys, Al wrought alloys and a Mg alloy. Parameters such as pouring temperature, cooling rate and grain refiner addition were controlled to achieve copious nucleation, nuclei survival and dendritic growth suppression during solidification. The influences of the controlling parameters on the formation of semisolid structure were different for each of these alloy groups. The as-cast structures were then partially remelted and isothermally held. Semisolid structures were developed and followed by semisolid casting into a stepped die.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The formation of local structure, in short peptides has been probed by examining cleavage patterns and rates of proteolysis of designed sequences with a high tendency to form β-hairpin structures. Three model sequences which bear fluorescence donor and acceptor groups have been investigated: Dab-Gaba-Lys-Pro-Leu-Gly-Lys-Val-Xxx-Yyy-Glu-Val-Ala-Ala-Cys-Lys-NH2 ï EDANS Xxx-Yyy: Peptide 1=DPro-LPro, Peptide 2=DPro-Gly, Peptide 3=Leu-Ala Fluorescence resonance energy transfer (FRET) provides a convenient probe for peptide cleavage. MALDI mass spectrometry has been used to probe sites of cleavage and CD spectroscopy to access the overall backbone conformation using analog sequences, which lack strongly absorbing donor and acceptor groups. The proteases trypsin, subtilisin, collagenase, elastase, proteinase K and thermolysin were used for proteolysis and the rates of cleavage determined. Peptide 3 is the most susceptible to cleavage by all the enzymes except thermolysin, which cleaves all three peptides at comparable rates. Peptides 1 and 2 are completely resistant to the action of trypsin, suggesting that β-turn formation acts as a deterrent to proteolytic cleavage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present paper, a phase-field model is developed to simulate the formation and evolution of lamellar microstructure in γ-TiAl alloys. The mechanism of formation of TiAl lamellae proposed by Denquin and Naka is incorporated into the model. The model describes the formation and evolution of the face-centered cubic (fcc) stacking lamellar zone followed by the subsequent appearance and growth of the γ-phase, involving both the chemical composition change by atom transfer and the ordering of the fcc lattice. The thermodynamics of the model system and the interaction between the displacive and diffusional transformations are described by a non-equilibrium free energy formulated as a function of concentration and structural order parameter fields. The long-range elastic interactions, arising from the lattice misfit between the α, fcc (A1) and the various orientation variants of the γ-phase are taken into account by incorporating of the elastic strain energy into the total free energy. Simulation studies based on the model successfully predicted some essential features of the lamellar structure. It is found that the formation and evolution of the lamellar structure are predominantly controlled by the minimization of the elastic energy of the interfaces between the different fcc stacking groups, low-symmetry product phase γ and the high-symmetry α-phase, as well as between the various orientation variants of the product phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The refinement of ferrite grain size is the most generally accepted approach to simultaneously improve the strength and toughness in steels. Historically, the level of ferrite refinement is limited to 5-10 μm using conventional industrial approaches. Nowadays, though, several thermomechanical processes have been developed to produce ferrite grain sizes of 1-3 μm or less, ranging from extreme thermal and deformation cycles to more typical thermomechanical processes. The present paper reviews the status of the production of ultrafine grained steels through relatively simple thermomechanical processing. This requires deformation within the Ae3 to Ar3 temperature range for a given alloy. Here, the formation of ultrafine ferrite (UFF) involves the dynamic transformation of a significant volume fraction of the austenite to ferrite. This dynamic strain induced transformation (DSIT) arises from the introduction of extensive intragranular nucleation sites that are not present in conventional controlled rolling. The DSIT route has the potential to be adjusted to suit current industrial infrastructure. However, there are a number of significant issues that have been raised, both as gaps in our understanding and as obstacles to industrial implementation. One of the critical issues is that it appears that very large strains are required. Combined with this concern is the issue of whether a combination of dynamic and static transformation can be used to achieve an adequate level of refinement. Another issue that has also become apparent is that grain sizes of 1 μm can lead to low levels of ductility and hence many workers are attempting to obtain 2-3 μm grains, or to introduce a second phase to provide the required ductility. There are also a number of areas of disagreement between authors including the role of dynamic recrystallisation of ferrite in the production of UFF by DSIT, the reasons for the low coarsening rate of UFF grains, the role of microalloying elements and the effects of austenite grain size and strain rate. The present review discusses these areas of controversy and highlights cases where experimental results do not agree.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study non-linear structure formation in the presence of dark energy. The influence of dark energy on the growth of large-scale cosmological structures is exerted both through its background effect on the expansion rate, and through its perturbations. In order to compute the rate of formation of massive objects we employ the spherical collapse formalism, which we generalize to include fluids with pressure. We show that the resulting non-linear evolution equations are identical to the ones obtained in the pseudo-Newtonian approach to cosmological perturbations, in the regime where an equation of state serves to describe both the background pressure relative to density, and the pressure perturbations relative to the density perturbations. We then consider a wide range of constant and time-dependent equations of state (including phantom models) parametrized in a standard way, and study their impact on the non-linear growth of structure. The main effect is the formation of dark energy structure associated with the dark matter halo: non-phantom equations of state induce the formation of a dark energy halo, damping the growth of structures; phantom models, on the other hand, generate dark energy voids, enhancing structure growth. Finally, we employ the Press-Schechter formalism to compute how dark energy affects the number of massive objects as a function of redshift (number counts).