939 resultados para SAND BARRIER
Resumo:
Middle to Late Holocene barriers are conspicuous landforms in southeastern and southern Brazilian regions. The barriers in the coastal zones of northern Santa Catarina, Parana and Sao Paulo states (27 degrees 19`-24 degrees 00`S) are formed mainly by beach ridge alignments and many barriers present foredune and blowout alignments in their seaward portion. The development of these eolian landforms appears to record a regional shift in coastal dynamics and barrier building. In this context, the Ilha Comprida barrier stands out for its well-developed and well-preserved foredunes and blowouts. Based on the presence or not and type of eolian landforms, the Ilha Comprida barrier can be divided seaward into inner, middle and outer units. The inner unit is formed entirely by beach ridges. The middle unit comprises a narrow belt of blowouts (up to 15 m high) aligned alongshore. Blowout lobes pointing NNW are indicative of their generation by southern winds. The outer unit is represented by low (<= 1 m high) active or stabilized foredunes and a small transgressive dunefield (similar to 1 km(2)). Twenty-seven luminescence ages (SAR protocol) obtained for the beach ridges, foredunes, and blowouts of these three units allow definition of a precise chronology of these landforms and calculation of rates of coastal progradation. The inner unit presents ages greater than 1004 +/- 88 years. The blowouts of the middle unit show ages from 575 +/- 47 to 172 +/- 18 years. The ages of the outer unit are less than 108 +/- 10 years. Rates of coastal progradation for the inner and outer units are 0.71-0.82 m/year and 0.86-2.23 m/year, respectively. The main phase of blowout development correlates well with the Little Ice Age (LIA) climatic event. These results indicate that southern winds in subtropical Brazil became increasingly more intense and/or frequent during the LIA. These conditions persist to the present and are responsible for the development of the eolian landforms in the outer unit. Thus, barrier geomorphology can record global climatic events. The sensitivity of barrier systems in subtropical Brazil to Late Holocene climate changes was favored by the relative sea level stillstand during this time. Luminescence dating makes it possible to analyze barrier geomorphology during Late Holocene climate changes operating on timescales of a hundred to thousand years. These results improve our knowledge of barrier building and will help in the evaluation of the impact of future climate changes on coastal settings. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Tsunamis are highly energetic events that may destructively impact the coast. Resolving the degree of coastal resilience to tsunamis is extremely difficult and sometimes impossible. In part, our understanding is constrained by the limited number of contemporaneous examples and by the high dynamism of coastal systems. In fact, longterm changes of coastal systems can mask the evidence of past tsunamis, leaving us a short or incomplete sedimentary archive. Here, we present a multidisciplinary approach involving sedimentological, geomorphological and geophysical analyses and numerical modelling of the AD 1755 tsunami flood on a coastal segment located within the southern coast of Portugal. In particular, the work focuses on deciphering the impact of the tsunami waves over a coastal sand barrier enclosing two lowlands largely inundated by the tsunami flood. Erosional features documented by geophysical data were assigned to the AD 1755 eventwith support of sedimentological and age estimation results. Furthermore, these features allowed the calibration of the simulation settings to reconstruct the local conditions and establish the run-up range of the AD 1755 tsunami when it hit this coast (6– 8 m above mean sea level). Our work highlights the usefulness of erosional imprints preserved in the sediment record to interpret the impact of the extreme events on sand barriers
Resumo:
Tese de doutoramento, Geologia (Geologia Económica e do Ambiente), Universidade de Lisboa, Faculdade de Ciências, 2014
Resumo:
Tese de doutoramento, Geologia (Geologia Económica e do Ambiente), Universidade de Lisboa, Faculdade de Ciências, 2016
Resumo:
Naturally occurring zircon sand was plasma spray coated on steel substrates previously coated with NiCrAlY bond coat. The coatings were characterized for their microstructure, chemical composition, thermal shock resistance, and the nature of structural phases present, The as-sprayed coatings consisted of t-ZrO2 (major phase), m-ZrO2, ZrSiO4 (minor phases), and amorphous SiO2. These coatings, when annealed at 1200 degrees C/1.44 x 10(4) s yielded a ZrSiO4 phase as a result of the reaction between ZrO2 and SiO2, Dramatic changes occurred in the characteristics of the coatings when a mixture of zircon sand and Y2O3 was plasma spray coated and annealed at 1400 degrees C/1.44 x 10(4) s, The t-ZrO2 phase was completely stabilized, and these coatings were found to have considerable potential for thermal barrier applications.
Resumo:
Federal Highway Administration, Washington, D.C.
Resumo:
Sand and nest temperatures were monitored during the 2002-2003 nesting season of the green turtle, Chelonia mydas, at Heron Island, Great Barrier Reef, Australia. Sand temperatures increased from similar to 24 degrees C early in the season to 27-29 degrees C in the middle, before decreasing again. Beach orientation affected sand temperature at nest depth throughout the season; the north facing beach remained 0.7 degrees C warmer than the east, which was 0.9 degrees C warmer than the south, but monitored nest temperatures were similar across all beaches. Sand temperature at 100 cm depth was cooler than at 40 cm early in the season, but this reversed at the end. Nest temperatures increased 2-4 degrees C above sand temperatures during the later half of incubation due to metabolic heating. Hatchling sex ratio inferred from nest temperature profiles indicated a strong female bias.
Resumo:
In 1999, the Department of Employment, Economic Development and Innovation (DEEDI), Fisheries Queensland undertook a new initiative to collect long term monitoring data of various important stocks including reef fish. This data and monitoring manual for the reef fish component of that program which was based on Underwater Visual Census methodology of 24 reefs on the Great Barrier Reef between 1999 and 2004. Data was collected using six 50m x 5m transects at 4 sites on 24 reefs. Benthic cover type was also recorded for 10m of each transect. The attached Access Database contains 5 tables being: SITE DETAILS TABLE Survey year Data entry complete REF survey site ID Site # (1-4) Location (reef name) Site Date (date surveyed) Observer 1 (3 initials to identify who estimated fish lengths and recorded benthic cover) TRANSECT DETAILS Survey ID Transect Number (1-6) Time (the transect was surveyed) Visibility (in metres) Minimum Depth surveyed (m) Maximum Depth surveyed (m) Percent of survey completed (%) Comments SUBSTRATE Survey ID Transect Number (1-6) then % cover of each of eth following categories of benthic cover types Dead Coral Live Coral Soft Coral Rubble Sand Sponge Algae Sea Grass Other COORDINATES (over survey sites) from -14 38.792 to -19 44.233 and from 145 21.507 to 149 55.515 SIGHTINGS ID Survey ID Transect Number (1-6) CAAB Code Scientific Name Reef Fish Length (estimated Fork Length of fish; -1 = unknown or not recorded) Outside Transect (if a fish was observed outside a transect -1 was recorded) Morph Code (F = footballer morph for Plectropomus laevis, S = Spawning colour morph displayed)
Resumo:
As a seepage barrier slurry trench material should have a relatively low coefficient of permeability, in the range of 10(-7) cm/s, and at the same time should be compatible with surrounding material with regard to compressibility. Although bentonite-sand/soil mixes are used widely, there is no specific engineering approach to proportion these mixes that satisfies the above practical requirements. In this paper, a generalized approach is presented for predicting the permeability and compressibility characteristics of mixes with minimum input parameters. This approach will be helpful in proportioning mixes and predicting corresponding changes in engineering behavior. It is possible to proportion a mix to arrive at the required compressibility without affecting the permeability. This is explained using an illustrative example.
Resumo:
Nearly 50% of India's population depends on variants of pit-toilet systems for human waste disposal. Nitrate contamination of groundwater by pit-toilet leachate is a major environmental concern in the country as it sources a major proportion (50-80%) of potable water from aquifers. Therefore, minimizing nitrate contamination of groundwater due to leachate infiltration from pit-toilet systems is essential. Batch and column experiments demonstrated the capability of bentonite-enhanced sand (BES) specimens to reduce nitrate concentrations in synthetic solutions (initial NO3-N concentration = 22.7 mg/L, C/N = 3) by about 85-90% in 10 to 24 hour by a heterotrophic denitrification process. Based on the laboratory results, it is recommended that use of a BES-permeable reactive barrier layer at the base of pit-toilets will facilitate heterotrophic denitrification and mitigate nitrate contamination of the underlying aquifer.
Resumo:
Twenty-five samples from six subenvironments in the barrier-lagoon systems in northeastern Shandong province, China, are examined. A statistical method is used to study the roundness variation of grains of different sizes. Roundness of very fine pebble and very coarse sand varies significantly in different subenvironments. It is possible to discriminate among aqueous depositional environments using the roundness of grains of these sizes. Roundness of grains finer than 0.84 φ is not distinguishable in different subenvironments.
Performance of a Sequential Reactive Barrier for Bioremediation of Coal Tar Contaminated Groundwater
Resumo:
Following a thorough site investigation, a biological Sequential Reactive Barrier (SEREBAR), designed to remove Polycyclic Aromatic Hydrocarbons (PAHs) and BTEX compounds, was installed at a Former Manufactured Gas Plant (FMGP) site. The novel design of the barrier comprises, in series, an interceptor and six reactive chambers. The first four chambers (2 nonaerated-2 aerated) were filled with sand to encourage microbial colonization. Sorbant Granular Activated Carbon (GAC) was present in the final two chambers in order to remove any recalcitrant compounds. The SEREBAR has been in continuous operation for 2 years at different operational flow rates (ranging from 320 L/d to 4000 L/d, with corresponding residence times in each chamber of 19 days and 1.5 days, respectively). Under low flow rate conditions (320-520 L/d) the majority of contaminant removal (>93%) occurred biotically within the interceptor and the aerated chambers. Under high flow rates (1000-4000 L/d) and following the installation of a new interceptor to prevent passive aeration, the majority of contaminant removal (>80%) again occurred biotically within the aerated chambers. The sorption zone (GAC) proved to be an effective polishing step, removing any remaining contaminants to acceptable concentrations before discharge down-gradient of the SEREBAR (overall removals >95%).