975 resultados para Ruin probability


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this note we discuss upper and lower bound for the ruin probability in an insurance model with very heavy-tailed claims and interarrival times.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We show that a simple mixing idea allows one to establish a number of explicit formulas for ruin probabilities and related quantities in collective risk models with dependence among claim sizes and among claim inter-occurrence times. Examples include compound Poisson risk models with completely monotone marginal claim size distributions that are dependent according to Archimedean survival copulas as well as renewal risk models with dependent inter-occurrence times.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

[spa] En un modelo de Poisson compuesto, definimos una estrategia de reaseguro proporcional de umbral : se aplica un nivel de retención k1 siempre que las reservas sean inferiores a un determinado umbral b, y un nivel de retención k2 en caso contrario. Obtenemos la ecuación íntegro-diferencial para la función Gerber-Shiu, definida en Gerber-Shiu -1998- en este modelo, que nos permite obtener las expresiones de la probabilidad de ruina y de la transformada de Laplace del momento de ruina para distintas distribuciones de la cuantía individual de los siniestros. Finalmente presentamos algunos resultados numéricos.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The present paper studies the probability of ruin of an insurer, if excess of loss reinsurance with reinstatements is applied. In the setting of the classical Cramer-Lundberg risk model, piecewise deterministic Markov processes are used to describe the free surplus process in this more general situation. It is shown that the finite-time ruin probability is both the solution of a partial integro-differential equation and the fixed point of a contractive integral operator. We exploit the latter representation to develop and implement a recursive algorithm for numerical approximation of the ruin probability that involves high-dimensional integration. Furthermore we study the behavior of the finite-time ruin probability under various levels of initial surplus and security loadings and compare the efficiency of the numerical algorithm with the computational alternative of stochastic simulation of the risk process. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

[spa] En un modelo de Poisson compuesto, definimos una estrategia de reaseguro proporcional de umbral : se aplica un nivel de retención k1 siempre que las reservas sean inferiores a un determinado umbral b, y un nivel de retención k2 en caso contrario. Obtenemos la ecuación íntegro-diferencial para la función Gerber-Shiu, definida en Gerber-Shiu -1998- en este modelo, que nos permite obtener las expresiones de la probabilidad de ruina y de la transformada de Laplace del momento de ruina para distintas distribuciones de la cuantía individual de los siniestros. Finalmente presentamos algunos resultados numéricos.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper studies a risk measure inherited from ruin theory and investigates some of its properties. Specifically, we consider a value-at-risk (VaR)-type risk measure defined as the smallest initial capital needed to ensure that the ultimate ruin probability is less than a given level. This VaR-type risk measure turns out to be equivalent to the VaR of the maximal deficit of the ruin process in infinite time. A related Tail-VaR-type risk measure is also discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Risk theory has been a very active research area over the last decades. The main objectives of the theory are to find adequate stochastic processes which can model the surplus of a (non-life) insurance company and to analyze the risk related quantities such as ruin time, ruin probability, expected discounted penalty function and expected discounted dividend/tax payments. The study of these ruin related quantities provides crucial information for actuaries and decision makers. This thesis consists of the study of four different insurance risk models which are essentially related. The ruin and related quantities are investigated by using different techniques, resulting in explicit or asymptotic expressions for the ruin time, the ruin probability, the expected discounted penalty function and the expected discounted tax payments. - La recherche en théorie du risque a été très dynamique au cours des dernières décennies. D'un point de vue théorique, les principaux objectifs sont de trouver des processus stochastiques adéquats permettant de modéliser le surplus d'une compagnie d'assurance non vie et d'analyser les mesures de risque, notamment le temps de ruine, la probabilité de ruine, l'espérance de la valeur actuelle de la fonction de pénalité et l'espérance de la valeur actuelle des dividendes et taxes. L'étude de ces mesures associées à la ruine fournit des informations cruciales pour les actuaires et les décideurs. Cette thèse consiste en l'étude des quatre différents modèles de risque d'assurance qui sont essentiellement liés. La ruine et les mesures qui y sont associées sont examinées à l'aide de différentes techniques, ce qui permet d'induire des expressions explicites ou asymptotiques du temps de ruine, de la probabilité de ruine, de l'espérance de la valeur actuelle de la fonction de pénalité et l'espérance de la valeur actuelle des dividendes et taxes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, we consider a discrete-time risk process allowing for delay in claim settlement, which introduces a certain type of dependence in the process. From martingale theory, an expression for the ultimate ruin probability is obtained, and Lundberg-type inequalities are derived. The impact of delay in claim settlement is then investigated. To this end, a convex order comparison of the aggregate claim amounts is performed with the corresponding non-delayed risk model, and numerical simulations are carried out with Belgian market data.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nous y introduisons une nouvelle classe de distributions bivariées de type Marshall-Olkin, la distribution Erlang bivariée. La transformée de Laplace, les moments et les densités conditionnelles y sont obtenus. Les applications potentielles en assurance-vie et en finance sont prises en considération. Les estimateurs du maximum de vraisemblance des paramètres sont calculés par l'algorithme Espérance-Maximisation. Ensuite, notre projet de recherche est consacré à l'étude des processus de risque multivariés, qui peuvent être utiles dans l'étude des problèmes de la ruine des compagnies d'assurance avec des classes dépendantes. Nous appliquons les résultats de la théorie des processus de Markov déterministes par morceaux afin d'obtenir les martingales exponentielles, nécessaires pour établir des bornes supérieures calculables pour la probabilité de ruine, dont les expressions sont intraitables.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have studied, in particular under normality of the implied random variables, the connections between different measures of risk such as the standard deviation, the W-ruin probability and the p-V@R. We discuss conditions granting the equivalence of these measures with respect to risk preference relations and the equivalence of dominance and efficiency of risk-reward criteria involving these measures. Then more specifically we applied these concepts to rigorously face the problem of finding the efficient set of de Finetti’s variable quota share proportional reinsurance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En este trabajo introducimos diversas clases de barreras del dividendo en la teoría modelo clásica de la ruina. Estudiamos la influencia de la estrategia de la barrera en probabilidad de la ruina. Un método basado en las ecuaciones de la renovación [Grandell (1991)], alternativa a la discusión diferenciada [Gerber (1975)], utilizado para conseguir las ecuaciones diferenciales parciales para resolver probabilidades de la supervivencia. Finalmente calculamos y comparamos las probabilidades de la supervivencia usando la barrera linear y parabólica del dividendo, con la ayuda de la simulación

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En este trabajo introducimos diversas clases de barreras del dividendo en la teoría modelo clásica de la ruina. Estudiamos la influencia de la estrategia de la barrera en probabilidad de la ruina. Un método basado en las ecuaciones de la renovación [Grandell (1991)], alternativa a la discusión diferenciada [Gerber (1975)], utilizado para conseguir las ecuaciones diferenciales parciales para resolver probabilidades de la supervivencia. Finalmente calculamos y comparamos las probabilidades de la supervivencia usando la barrera linear y parabólica del dividendo, con la ayuda de la simulación

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work we study a new risk model for a firm which is sensitive to its credit quality, proposed by Yang(2003): Are obtained recursive equations for finite time ruin probability and distribution of ruin time and Volterra type integral equation systems for ultimate ruin probability, severity of ruin and distribution of surplus before and after ruin