991 resultados para Rheological behavior


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper reports on the structural change and rheological behavior of mixtures of macromolecular suspensions (guar and xanthan gums) in crossflow microfiltration processing. Mixtures in suspension of guar and xanthan gums at low concentrations (1,000 ppm) and different proportions were processed by microfiltration with membrane of nominal pore size of 0.4 mu m. The rheological behavior of the mixtures was investigated in rotational viscometers at two different temperatures, 25 and 40 C, at the beginning and at the end of each experiment. The shear stress (t) in function of the shear rate (gamma) was fitted and analyzed with the power-law model. All the mixtures showed flow behavior index values (n) lower than 1, characterizing non-Newtonian fluids (pseudoplastic). The samples of both mixtures and permeates were also analyzed by absorbency spectroscopy in infrared radiation. The absorbency analysis showed that there is good synergism between xanthan and guar gums without structure modifications or gel formation in the concentration process by microfiltration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work the squeeze flow technique was used to evaluate the rheological behavior of cement-based mortars containing macroscopic aggregates up to 1.2 mm. Compositions with different water and air contents were tested at three squeezing rates (0.01, 0.1 and 1 mm/s) 15 and 60 min after mixing. The mortars prepared with low (13 wt.%) and usual water content (15 wt.%) presented opposite behaviors as a function of elapsed time and squeezing speed. The first lost its cohesion with time and required higher loads when squeezed faster, while the latter became stiffer with time and was more difficult to be squeezed slowly as a result of phase segregation. Due to the increase of air content, the effects of this compressible phase became more significant and a more complex behavior was observed. Rheological properties such as elongational viscosity and yield stress were also determined. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the main factors affecting the rheological behavior of polyethylene terephtalate (PET) in the linear viscoelastic regime (water content, time delay before test, duration of experiment, and temperature) were accessed. Small amplitude oscillatory shear tests were performed after different time delays ranging from 300 to 5000 s for samples with water contents ranging from 0.02 to 0.45 wt %. Time sweep tests were carried out for different durations to explain the changes undergone by PET before and during small amplitude oscillatory shear measurements. Immediately after the time sweep tests, the PET samples were removed from the rheometer, analyzed by differential scanning calorimetry and their molar mass was obtained by viscometry analysis. It was shown that for all the samples, the delay before test and residence time within the rheometer (i.e. duration of experiment) result in structural changes of the PET samples, such as increase or decrease of molar mass, broadening of molar mass distribution, and branching phenomena. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 116: 3525-3533, 2010

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim of this work is to investigate the effect of monomers containing either carboxylate (ammonium acrylate) or acrylamide (hydroxymethylacrylamide) functional groups on the surface charging and theological behavior of alumina suspensions. The rheological behavior was investigated by changing the concentrations of dispersant (ammonium polyacrylate) and monomers in the suspensions. The zeta potential of alumina suspensions containing each of the different monomers was measured as a function of dispersant additions. The suspension theological behavior varied significantly depending on the monomer type, which could be explained in terms of repulsive forces, pH changes and additive interactions. (C) 2006 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: It is well known that the Amazon region presents a huge biodiversity; therefore, countless natural resources are being employed in the production of phytocosmetics and phytomedicines. Objective: The purpose of this work was to obtain emulsions produced with Buriti oil and nonionic surfactants. Methods: Two surfactant systems were employed (Steareth-2 associated to Ceteareth-5 and to Ceteareth-20) to produce the emulsions using phase diagram method. Emulsions were obtained by echo-planar imaging method at 75 degrees C. Rheological behavior and zeta potential were evaluated, and accelerated stability tests were performed. Results: All emulsions analyzed presented pseudoplastic behavior. Zeta potential values were obtained between -14.2 and -53.3 mV. The formulations did not show changes in either physical stability, pH, or rheological behavior after accelerated stability tests. Significant differences were observed only after temperature cycling test. Conclusion: Based on these results, the emulsions obtained could be considered as promising delivery systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study the rheological behavior in different temperatures (0; 6; 18 e 24 ºC) and physicochemical parameters of integral annona (Annona squamosa) pulp and the annona pulp with milk in different percentages pulp/milk (75g of annona pulp/25g of milk, 50g of annona pulp/50g of milk, 25g of annona pulp/75g of milk) have been availed, in order to verify the effect of temperature and pulp concentration in the rheological behavior of these beverages. To obtain the rheological parameters a concentric cylinder rheometer has been used and the rheograms were analyzed using the Ostwald-de-Wael (power Law) and Herschel-Bulkley models. The physicochemical parameters (sugars, pH, ash, acidity and soluble solids) were determined in order to establish correlations with the rheological behavior. Finally, the best results had been obtained using the Herschel-Bulkley model; the low values for the behavior index (n <1) obtained confirm the pseudoplastic behavior of all samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies involving the use of microalgae are increasingly intensifying for the potential they present to produce biofuels, because they are a renewable energy source that does not compete directly with food production, and because they enable the obtaining of a fuel with less environmental impact when compared to fossil fuel. In this context, the use of microalgae is directly associated to its capacity to be produced on a large scale and to be extracted from the culture medium. Rheological studies are important for obtaining the information needed in the elaboration of projects and equipment that will be used in various operations existing in systems of production and extraction of algal biomass. In the evaluation of different levels of dry biomass concentration, studies have been conducted of the rheological behavior of cultures of Chlorella sp. BR001 and Scenedesmus sp. BR003. The Power Law model adjusted well to the data of shear stress as a function of strain rate. In all concentrations the cultures showed non-Newtonian behavior. It was observed to Scenedesmus sp. BR003 little effect of biomass concentration on the apparent viscosity and shear stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The physical and physicochemical characteristics of blueberry (Vaccinium myrtillus) fruits produced in Brazil were analyzed. Rheological properties were measured at 5, 25, 45 and 65 °C, on a stress controlled rheometer equipped with grooved a stainless-steel parallel-plate in a shear rate range of 0-300 s-1, with the objective of determining the influence of temperature on the rheological properties. The pseudoplastic behavior with yield stress was well described by the Ostwald-de-Waele (Power Law), Herschel-Bulkley (HB) and Mizhari Berk models. The yield stress and behavior index decreased with the increase in the temperatures for 5, 25, and 45 °C whereas for the temperature of 65 °C the effects were the opposite exhibiting elevated values. The viscosity decreased with an increase in temperature, and the Arrhenius equation described adequately the effect of temperature on the apparent viscosity of the puree, in which the activation energy (Ea) determined at a shear rate of 100 s-1 was 9.36 kJ.mol-1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anthocyanins are the pigments responsible for the color of most red grapes and are easily degraded following various reaction mechanisms affected by oxygen, enzymes, pH, and temperature among other variables. In this study, a jam model system was developed using Merlot and Bordô grape extracts and polysaccharides (xanthan and locust bean gums) and different temperatures (45, 55 and 65 °C). The stability of the anthocyanin pigments and the rheological behavior of the jam model system were studied. For the determination of the stability, the half-life time and first-order reaction rate constants for the anthocyanin pigments were calculated. The rheological behavior was determined through the Power law model. The jam model system produced using a temperature of 45 °C showed the best results for the anthocyanin half-life time. The first-order reaction rate constants for the 45, 55, and 65 °C treatments were not significantly different among each other (p > 0.05). It was observed that with an increase in the jam model system temperature there was an increase in the index of consistency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Foods behave as non-Newtonian fluids, but little is known about how corn and soybean mix behave under viscometric flow. In order to characterize the rheological behavior of animal feed under viscometric flow, a 70:30 (mass:mass) mixture of ground corn and soybean grains was submitted to a capillary rheometer at 3 different temperatures (80, 120, and 160 °C), different moisture levels (26.5 ± 0.08; 30.4 ± 0.31, and 33.4 ± 0.05%), and 4 shear rates (30.4; 72.9; 304.3, and 728.6/second). Different strain rates and die dimensions were used to obtain the target shear rates. The resulting data were fitted to Power Law, Casson, and Bingham models. Based on experimental data, water content, mass temperature, and the effects of shear rate on the apparent shear viscosity of corn-soy mix were fitted to a single expression (p < 0.001, R² = 0.93): η = 18,769.7 (y)-0.86 e (-9.34 U + 935 T), where y is shear rate, U is sample moisture, and T is sample temperature in Kelvin scale. As expected, such mixture presented a pseudoplastic (shear-thinning) behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rheological behavior of Brazilian Cherry (Eugenia uniflora L.) pulp in the range of temperatures used for pasteurization (83 to 97 °C) was studied. The results indicated that Brazilian Cherry pulp presented pseudoplastic behavior, and the Herschel-Bulkley model was considered more adequate to represent the rheological behavior of this pulp in the range of temperatures studied. The fluid behavior index (n) varied in the range from 0.448 to 0.627. The effect of temperature on the apparent viscosity was described by an equation analogous to Arrhenius equation, and a decrease in apparent viscosity with an increase in temperature was observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chitosan/starchblends represent an interesting alternative for the preparation of biocompatible drug delivery systems, packing materials and edible films. This paper reports on the effects of starch gelatinization and oxidation on the rheological behavior of chitosan/starch blends. The results show that the modifications in the starch structure cause changes in G` (storage modulus) and G `` (lossmodulus) as a function of frequency. For chitosan/starch, G `` is higher than G`, showing a viscous behavior. However, for chitosan/gelatinized starch and chitosan/oxidized starch, an increase in the angular frequency promotes a modulus crossover at omega = 0.02 and 0.04 rad s(-1), respectively. The viscosity curves as a function of shear rate show that both modifications cause an increase in viscosity, and all blends show a non-Newtonian behavior. (C) 2011 Society of Chemical Industry

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article presented physicochemical characterization and rheological behavior evaluation of the liquid crystalline mesophases developed with different silicones. There were prepared 5 ternary systems, which were carried out the determination of the relative density, the electric conductivity and polarized light microscopy analysis, being selected two systems to promote the Preliminary Stability Tests. The results showed that System 1 obtained the major liquid crystal formation and a higher stability. The temperature influences in the systems stability and phases structure. In hot oven, observed oneself the mixture of lamellar and hexagonal phase, for both systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rheology has the purpose to study the flux and deformation of materials when submitted to some tension or outer mechanical solicitation. In practice, the effective scientific field broached by rheology is restricted only to the study of homogeneous fluids behavior, in which are included eminent liquids, particles suspensions, and emulsions. The viscosity (η) and the yield stress (τ 0) are the two basic values that define the fluids' behavior. The first one is the proportionality constant that relates the shear rate (γ) with the shear stress (τ) applied, while the second indicates the minimal tension for the flowage beginning. The fluids that obey the Newton's relation - Newtonians fluids - display the constant viscosity and the null yield stress. It's the case of diluted suspensions and grate amount of the pure liquids (water, acetone, alcohol, etc.) in which the viscosity is an intrinsic characteristic that depends on temperature and, in a less significant way, pressure. The suspension, titled Cement Paste, is defined as being a mixture of water and cement with, or without, a superplasticizer additive. The cement paste has a non-Newtonian fluid behavior (pseudoplastic), showing a viscosity that varies in accord to the applied shear stress and significant deformations are obtained from a delimited yield stress. In some cases, systems can also manifest the influence of chemical additives used to modify the interactions fluid/particles, besides the introduced modifications by the presence of incorporated air. To the cement paste the rheometric rehearsals were made using the rheometer R/S Brookfield that controls shear stress and shear rate in accord to the rheological model of Herschel-Bulkley that seems to better adapt to this kind of suspension's behavior. This paper shows the results of rheometrical rehearsals on the cement paste that were produced with cements HOLCIM MC-20 RS and CPV-ARI RS with the addition of superplasticizer additives based of napthaline and polycarboxilate, with and without a constant agitation of the mixture. The obtainment of dosages of superplasticizer additives, as well as the water/cement ratio, at the cement at the fluidify rate determination, was done in a total of 12 different mixtures. It's observed that the rheological parameters seem to vary according to the cement type, the superplasticizer type, and the methodology applied at the fluidity rate determination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rheological behavior of poly(ethylene glycol) of 1500 g·mol -1(PEG1500) aqueous solutions with various polymer concentrations (w = 0.05, 0.10, 0.15, 0.20 and 0.25) was studied at different temperatures (T = 283.15, 288.15, 293.15, 298.15 and 303.15) K. The analyses were carried out considering shear rates ranging from (20 to 350) s-1, using a cone-and-plate rheometer under controlled stress and temperature. Classical rheological models (Newton, Bingham, Power Law, Casson, and Herschel-Bulkley) were tested. The Power Law model was shown suitable to mathematically represent the rheological behavior of these solutions. Well-adjusted empirical models were derived for consistency index variations in function of temperature (Arrhenius-type model; R2 > 0.96), polymer concentration (exponential model; R2 > 0.99) or the combination of both (R 2 > 0.99). Additionally, linear models were used to represent the variations of behavior index in the functions of temperature (R2 > 0.83) and concentration (R2 > 0.87). © 2013 American Chemical Society.