347 resultados para Randomization
Resumo:
Candidate gene studies have reported CYP19A1 variants to be associated with endometrial cancer and with estradiol (E2) concentrations. We analyzed 2937 single nucleotide polymorphisms (SNPs) in 6608 endometrial cancer cases and 37 925 controls and report the first genome wide-significant association between endometrial cancer and a CYP19A1 SNP (rs727479 in intron 2, P=4.8x10(-11)). SNP rs727479 was also among those most strongly associated with circulating E2 concentrations in 2767 post-menopausal controls (P=7.4x10(-8)). The observed endometrial cancer odds ratio per rs727479 A-allele (1.15, CI=1.11-1.21) is compatible with that predicted by the observed effect on E2 concentrations (1.09, CI=1.03-1.21), consistent with the hypothesis that endometrial cancer risk is driven by E2. From 28 candidate-causal SNPs, 12 co-located with three putative gene-regulatory elements and their risk alleles associated with higher CYP19A1 expression in bioinformatical analyses. For both phenotypes, the associations with rs727479 were stronger among women with a higher BMI (Pinteraction=0.034 and 0.066 respectively), suggesting a biologically plausible gene-environment interaction.
Resumo:
Background Epidemiological studies suggest a potential role for obesity and determinants of adult stature in prostate cancer risk and mortality, but the relationships described in the literature are complex. To address uncertainty over the causal nature of previous observational findings, we investigated associations of height- and adiposity-related genetic variants with prostate cancer risk and mortality. Methods We conducted a case–control study based on 20,848 prostate cancers and 20,214 controls of European ancestry from 22 studies in the PRACTICAL consortium. We constructed genetic risk scores that summed each man’s number of height and BMI increasing alleles across multiple single nucleotide polymorphisms robustly associated with each phenotype from published genome-wide association studies. Results The genetic risk scores explained 6.31 and 1.46 % of the variability in height and BMI, respectively. There was only weak evidence that genetic variants previously associated with increased BMI were associated with a lower prostate cancer risk (odds ratio per standard deviation increase in BMI genetic score 0.98; 95 % CI 0.96, 1.00; p = 0.07). Genetic variants associated with increased height were not associated with prostate cancer incidence (OR 0.99; 95 % CI 0.97, 1.01; p = 0.23), but were associated with an increase (OR 1.13; 95 % CI 1.08, 1.20) in prostate cancer mortality among low-grade disease (p heterogeneity, low vs. high grade <0.001). Genetic variants associated with increased BMI were associated with an increase (OR 1.08; 95 % CI 1.03, 1.14) in all-cause mortality among men with low-grade disease (p heterogeneity = 0.03). Conclusions We found little evidence of a substantial effect of genetically elevated height or BMI on prostate cancer risk, suggesting that previously reported observational associations may reflect common environmental determinants of height or BMI and prostate cancer risk. Genetically elevated height and BMI were associated with increased mortality (prostate cancer-specific and all-cause, respectively) in men with low-grade disease, a potentially informative but novel finding that requires replication.
Resumo:
The association between adiposity and cardiometabolic traits is well known from epidemiological studies. Whilst the causal relationship is clear for some of these traits, for others it is not. We aimed to determine whether adiposity is causally related to various cardiometabolic traits using the Mendelian randomization approach.
Resumo:
Background: Adiposity, as indicated by body mass index (BMI), has been associated with risk of cardiovascular diseases in epidemiological studies. We aimed to investigate if these associations are causal, using Mendelian randomization (MR) methods.
Methods: The associations of BMI with cardiovascular outcomes [coronary heart disease (CHD), heart failure and ischaemic stroke], and associations of a genetic score (32 BMI single nucleotide polymorphisms) with BMI and cardiovascular outcomes were examined in up to 22 193 individuals with 3062 incident cardiovascular events from nine prospective follow-up studies within the ENGAGE consortium. We used random-effects meta-analysis in an MR framework to provide causal estimates of the effect of adiposity on cardiovascular outcomes.
Results: There was a strong association between BMI and incident CHD (HR = 1.20 per SD-increase of BMI, 95% CI, 1.12–1.28, P = 1.9·10−7), heart failure (HR = 1.47, 95% CI, 1.35–1.60, P = 9·10−19) and ischaemic stroke (HR = 1.15, 95% CI, 1.06–1.24, P = 0.0008) in observational analyses. The genetic score was robustly associated with BMI (β = 0.030 SD-increase of BMI per additional allele, 95% CI, 0.028–0.033, P = 3·10−107). Analyses indicated a causal effect of adiposity on development of heart failure (HR = 1.93 per SD-increase of BMI, 95% CI, 1.12–3.30, P = 0.017) and ischaemic stroke (HR = 1.83, 95% CI, 1.05–3.20, P = 0.034). Additional cross-sectional analyses using both ENGAGE and CARDIoGRAMplusC4D data showed a causal effect of adiposity on CHD.
Conclusions: Using MR methods, we provide support for the hypothesis that adiposity causes CHD, heart failure and, previously not demonstrated, ischaemic stroke.
Resumo:
BACKGROUND: Breast reconstruction aims to improve health-related quality of life after mastectomy. However, evidence guiding patients and surgeons in shared decision-making concerning the optimal type or timing of surgery is lacking.
METHODS: QUEST comprised two parallel feasibility phase III randomized multicentre trials to assess the impact of the type and timing of latissimus dorsi breast reconstruction on health-related quality of life when postmastectomy radiotherapy is unlikely (QUEST A) or highly probable (QUEST B). The primary endpoint for the feasibility phase was the proportion of women who accepted randomization, and it would be considered feasible if patient acceptability rates exceeded 25 per cent of women approached. A companion QUEST Perspectives Study (QPS) of patients (both accepting and declining trial participation) and healthcare professionals assessed trial acceptability.
RESULTS: The QUEST trials opened in 15 UK centres. After 18 months of recruitment, 17 patients were randomized to QUEST A and eight to QUEST B, with overall acceptance rates of 19 per cent (17 of 88) and 22 per cent (8 of 36) respectively. The QPS recruited 56 patients and 51 healthcare professionals. Patient preference was the predominant reason for declining trial entry, given by 47 (53 per cent) of the 88 patients approached for QUEST A and 22 (61 per cent) of the 36 approached for QUEST B. Both trials closed to recruitment in December 2012, acknowledging the challenges of achieving satisfactory patient accrual.
CONCLUSION: Despite extensive efforts to overcome recruitment barriers, it was not feasible to reach timely recruitment targets within a feasibility study. Patient preferences for breast reconstruction types and timings were common, rendering patients unwilling to enter the trial.
Resumo:
Although the relationship between serum uric acid (SUA) and adiposity is well established, the direction of the causality is still unclear in the presence of conflicting evidences. We used a bidirectional Mendelian randomization approach to explore the nature and direction of causality between SUA and adiposity in a population-based study of Caucasians aged 35 to 75 years. We used, as instrumental variables, rs6855911 within the SUA gene SLC2A9 in one direction, and combinations of SNPs within the adiposity genes FTO, MC4R and TMEM18 in the other direction. Adiposity markers included weight, body mass index, waist circumference and fat mass. We applied a two-stage least squares regression: a regression of SUA/adiposity markers on our instruments in the first stage and a regression of the response of interest on the fitted values from the first stage regression in the second stage. SUA explained by the SLC2A9 instrument was not associated to fat mass (regression coefficient [95% confidence interval]: 0.05 [-0.10, 0.19] for fat mass) contrasting with the ordinary least square estimate (0.37 [0.34, 0.40]). By contrast, fat mass explained by genetic variants of the FTO, MC4R and TMEM18 genes was positively and significantly associated to SUA (0.31 [0.01, 0.62]), similar to the ordinary least square estimate (0.27 [0.25, 0.29]). Results were similar for the other adiposity markers. Using a bidirectional Mendelian randomization approach in adult Caucasians, our findings suggest that elevated SUA is a consequence rather than a cause of adiposity.
Resumo:
Resumen tomado de la publicaci??n. Resumen tambi??n en ingl??s
Resumo:
BACKGROUND: Obesity is associated with vitamin D deficiency, and both are areas of active public health concern. We explored the causality and direction of the relationship between body mass index (BMI) and 25-hydroxyvitamin D [25(OH)D] using genetic markers as instrumental variables (IVs) in bi-directional Mendelian randomization (MR) analysis. METHODS AND FINDINGS: We used information from 21 adult cohorts (up to 42,024 participants) with 12 BMI-related SNPs (combined in an allelic score) to produce an instrument for BMI and four SNPs associated with 25(OH)D (combined in two allelic scores, separately for genes encoding its synthesis or metabolism) as an instrument for vitamin D. Regression estimates for the IVs (allele scores) were generated within-study and pooled by meta-analysis to generate summary effects. Associations between vitamin D scores and BMI were confirmed in the Genetic Investigation of Anthropometric Traits (GIANT) consortium (n = 123,864). Each 1 kg/m(2) higher BMI was associated with 1.15% lower 25(OH)D (p = 6.52×10⁻²⁷). The BMI allele score was associated both with BMI (p = 6.30×10⁻⁶²) and 25(OH)D (-0.06% [95% CI -0.10 to -0.02], p = 0.004) in the cohorts that underwent meta-analysis. The two vitamin D allele scores were strongly associated with 25(OH)D (p≤8.07×10⁻⁵⁷ for both scores) but not with BMI (synthesis score, p = 0.88; metabolism score, p = 0.08) in the meta-analysis. A 10% higher genetically instrumented BMI was associated with 4.2% lower 25(OH)D concentrations (IV ratio: -4.2 [95% CI -7.1 to -1.3], p = 0.005). No association was seen for genetically instrumented 25(OH)D with BMI, a finding that was confirmed using data from the GIANT consortium (p≥0.57 for both vitamin D scores). CONCLUSIONS: On the basis of a bi-directional genetic approach that limits confounding, our study suggests that a higher BMI leads to lower 25(OH)D, while any effects of lower 25(OH)D increasing BMI are likely to be small. Population level interventions to reduce BMI are expected to decrease the prevalence of vitamin D deficiency.
Resumo:
Combining SNPs into allele scores provides a more powerful instrument for MR analysis than a single SNP in isolation. Population stratification and the potential for pleiotropic effects need to be considered in MR studies on vitamin D.
Resumo:
Randomization is a key step in reducing selection bias during the treatment allocation phase in randomized clinical trials. The process of randomization follows specific steps, which include generation of the randomization list, allocation concealment, and implementation of randomization. The phenomenon in the dental and orthodontic literature of characterizing treatment allocation as random is frequent; however, often the randomization procedures followed are not appropriate. Randomization methods assign, at random, treatment to the trial arms without foreknowledge of allocation by either the participants or the investigators thus reducing selection bias. Randomization entails generation of random allocation, allocation concealment, and the actual methodology of implementing treatment allocation randomly and unpredictably. Most popular randomization methods include some form of restricted and/or stratified randomization. This article introduces the reasons, which make randomization an integral part of solid clinical trial methodology, and presents the main randomization schemes applicable to clinical trials in orthodontics.