899 resultados para Random graph
Resumo:
The problem of vertex coloring in random graphs is studied using methods of statistical physics and probability. Our analytical results are compared to those obtained by exact enumeration and Monte Carlo simulations. We critically discuss the merits and shortcomings of the various methods, and interpret the results obtained. We present an exact analytical expression for the two-coloring problem as well as general replica symmetric approximated solutions for the thermodynamics of the graph coloring problem with p colors and K-body edges. ©2002 The American Physical Society.
Resumo:
This thesis includes analysis of disordered spin ensembles corresponding to Exact Cover, a multi-access channel problem, and composite models combining sparse and dense interactions. The satisfiability problem in Exact Cover is addressed using a statistical analysis of a simple branch and bound algorithm. The algorithm can be formulated in the large system limit as a branching process, for which critical properties can be analysed. Far from the critical point a set of differential equations may be used to model the process, and these are solved by numerical integration and exact bounding methods. The multi-access channel problem is formulated as an equilibrium statistical physics problem for the case of bit transmission on a channel with power control and synchronisation. A sparse code division multiple access method is considered and the optimal detection properties are examined in typical case by use of the replica method, and compared to detection performance achieved by interactive decoding methods. These codes are found to have phenomena closely resembling the well-understood dense codes. The composite model is introduced as an abstraction of canonical sparse and dense disordered spin models. The model includes couplings due to both dense and sparse topologies simultaneously. The new type of codes are shown to outperform sparse and dense codes in some regimes both in optimal performance, and in performance achieved by iterative detection methods in finite systems.
Resumo:
In this article we study the one-dimensional random geometric (random interval) graph when the location of the nodes are independent and exponentially distributed. We derive exact results and limit theorems for the connectivity and other properties associated with this random graph. We show that the asymptotic properties of a graph with a truncated exponential distribution can be obtained using the exponential random geometric graph. © 2007 Wiley Periodicals, Inc. Random Struct. Alg., 2008.
Resumo:
Gene mapping is a systematic search for genes that affect observable characteristics of an organism. In this thesis we offer computational tools to improve the efficiency of (disease) gene-mapping efforts. In the first part of the thesis we propose an efficient simulation procedure for generating realistic genetical data from isolated populations. Simulated data is useful for evaluating hypothesised gene-mapping study designs and computational analysis tools. As an example of such evaluation, we demonstrate how a population-based study design can be a powerful alternative to traditional family-based designs in association-based gene-mapping projects. In the second part of the thesis we consider a prioritisation of a (typically large) set of putative disease-associated genes acquired from an initial gene-mapping analysis. Prioritisation is necessary to be able to focus on the most promising candidates. We show how to harness the current biomedical knowledge for the prioritisation task by integrating various publicly available biological databases into a weighted biological graph. We then demonstrate how to find and evaluate connections between entities, such as genes and diseases, from this unified schema by graph mining techniques. Finally, in the last part of the thesis, we define the concept of reliable subgraph and the corresponding subgraph extraction problem. Reliable subgraphs concisely describe strong and independent connections between two given vertices in a random graph, and hence they are especially useful for visualising such connections. We propose novel algorithms for extracting reliable subgraphs from large random graphs. The efficiency and scalability of the proposed graph mining methods are backed by extensive experiments on real data. While our application focus is in genetics, the concepts and algorithms can be applied to other domains as well. We demonstrate this generality by considering coauthor graphs in addition to biological graphs in the experiments.
Resumo:
Generative algorithms for random graphs have yielded insights into the structure and evolution of real-world networks. Most networks exhibit a well-known set of properties, such as heavy-tailed degree distributions, clustering and community formation. Usually, random graph models consider only structural information, but many real-world networks also have labelled vertices and weighted edges. In this paper, we present a generative model for random graphs with discrete vertex labels and numeric edge weights. The weights are represented as a set of Beta Mixture Models (BMMs) with an arbitrary number of mixtures, which are learned from real-world networks. We propose a Bayesian Variational Inference (VI) approach, which yields an accurate estimation while keeping computation times tractable. We compare our approach to state-of-the-art random labelled graph generators and an earlier approach based on Gaussian Mixture Models (GMMs). Our results allow us to draw conclusions about the contribution of vertex labels and edge weights to graph structure.
Resumo:
The human electroencephalogram (EEG) is globally characterized by a 1/f power spectrum superimposed with certain peaks, whereby the "alpha peak" in a frequency range of 8-14 Hz is the most prominent one for relaxed states of wakefulness. We present simulations of a minimal dynamical network model of leaky integrator neurons attached to the nodes of an evolving directed and weighted random graph (an Erdos-Renyi graph). We derive a model of the dendritic field potential (DFP) for the neurons leading to a simulated EEG that describes the global activity of the network. Depending on the network size, we find an oscillatory transition of the simulated EEG when the network reaches a critical connectivity. This transition, indicated by a suitably defined order parameter, is reflected by a sudden change of the network's topology when super-cycles are formed from merging isolated loops. After the oscillatory transition, the power spectra of simulated EEG time series exhibit a 1/f continuum superimposed with certain peaks. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A geodesic in a graph G is a shortest path between two vertices of G. For a specific function e(n) of n, we define an almost geodesic cycle C in G to be a cycle in which for every two vertices u and v in C, the distance d(G)(u, v) is at least d(C)(u, v) - e(n). Let omega(n) be any function tending to infinity with n. We consider a random d-regular graph on n vertices. We show that almost all pairs of vertices belong to an almost geodesic cycle C with e(n)= log(d-1)log(d-1) n+omega(n) and vertical bar C vertical bar =2 log(d-1) n+O(omega(n)). Along the way, we obtain results on near-geodesic paths. We also give the limiting distribution of the number of geodesics between two random vertices in this random graph. (C) 2010 Wiley Periodicals, Inc. J Graph Theory 66: 115-136, 2011
Resumo:
Consider the following problem: Forgiven graphs G and F(1),..., F(k), find a coloring of the edges of G with k colors such that G does not contain F; in color i. Rodl and Rucinski studied this problem for the random graph G,,, in the symmetric case when k is fixed and F(1) = ... = F(k) = F. They proved that such a coloring exists asymptotically almost surely (a.a.s.) provided that p <= bn(-beta) for some constants b = b(F,k) and beta = beta(F). This result is essentially best possible because for p >= Bn(-beta), where B = B(F, k) is a large constant, such an edge-coloring does not exist. Kohayakawa and Kreuter conjectured a threshold function n(-beta(F1,..., Fk)) for arbitrary F(1), ..., F(k). In this article we address the case when F(1),..., F(k) are cliques of different sizes and propose an algorithm that a.a.s. finds a valid k-edge-coloring of G(n,p) with p <= bn(-beta) for some constant b = b(F(1),..., F(k)), where beta = beta(F(1),..., F(k)) as conjectured. With a few exceptions, this algorithm also works in the general symmetric case. We also show that there exists a constant B = B(F,,..., Fk) such that for p >= Bn(-beta) the random graph G(n,p) a.a.s. does not have a valid k-edge-coloring provided the so-called KLR-conjecture holds. (C) 2008 Wiley Periodicals, Inc. Random Struct. Alg., 34, 419-453, 2009
Resumo:
The ground-state phase diagram of an Ising spin-glass model on a random graph with an arbitrary fraction w of ferromagnetic interactions is analysed in the presence of an external field. Using the replica method, and performing an analysis of stability of the replica-symmetric solution, it is shown that w = 1/2, corresponding to an unbiased spin glass, is a singular point in the phase diagram, separating a region with a spin-glass phase (w < 1/2) from a region with spin-glass, ferromagnetic, mixed and paramagnetic phases (w > 1/2).
Resumo:
We propose a simple model that captures the salient properties of distribution networks, and study the possible occurrence of blackouts, i.e., sudden failings of large portions of such networks. The model is defined on a random graph of finite connectivity. The nodes of the graph represent hubs of the network, while the edges of the graph represent the links of the distribution network. Both, the nodes and the edges carry dynamical two state variables representing the functioning or dysfunctional state of the node or link in question. We describe a dynamical process in which the breakdown of a link or node is triggered when the level of maintenance it receives falls below a given threshold. This form of dynamics can lead to situations of catastrophic breakdown, if levels of maintenance are themselves dependent on the functioning of the net, once maintenance levels locally fall below a critical threshold due to fluctuations. We formulate conditions under which such systems can be analyzed in terms of thermodynamic equilibrium techniques, and under these conditions derive a phase diagram characterizing the collective behavior of the system, given its model parameters. The phase diagram is confirmed qualitatively and quantitatively by simulations on explicit realizations of the graph, thus confirming the validity of our approach. © 2007 The American Physical Society.
Resumo:
This paper considers a stochastic SIR (susceptible-infective-removed) epidemic model in which individuals may make infectious contacts in two ways, both within 'households' (which for ease of exposition are assumed to have equal size) and along the edges of a random graph describing additional social contacts. Heuristically-motivated branching process approximations are described, which lead to a threshold parameter for the model and methods for calculating the probability of a major outbreak, given few initial infectives, and the expected proportion of the population who are ultimately infected by such a major outbreak. These approximate results are shown to be exact as the number of households tends to infinity by proving associated limit theorems. Moreover, simulation studies indicate that these asymptotic results provide good approximations for modestly-sized finite populations. The extension to unequal sized households is discussed briefly.
Resumo:
We consider a scenario in which a wireless sensor network is formed by randomly deploying n sensors to measure some spatial function over a field, with the objective of computing a function of the measurements and communicating it to an operator station. We restrict ourselves to the class of type-threshold functions (as defined in the work of Giridhar and Kumar, 2005), of which max, min, and indicator functions are important examples: our discussions are couched in terms of the max function. We view the problem as one of message-passing distributed computation over a geometric random graph. The network is assumed to be synchronous, and the sensors synchronously measure values and then collaborate to compute and deliver the function computed with these values to the operator station. Computation algorithms differ in (1) the communication topology assumed and (2) the messages that the nodes need to exchange in order to carry out the computation. The focus of our paper is to establish (in probability) scaling laws for the time and energy complexity of the distributed function computation over random wireless networks, under the assumption of centralized contention-free scheduling of packet transmissions. First, without any constraint on the computation algorithm, we establish scaling laws for the computation time and energy expenditure for one-time maximum computation. We show that for an optimal algorithm, the computation time and energy expenditure scale, respectively, as Theta(radicn/log n) and Theta(n) asymptotically as the number of sensors n rarr infin. Second, we analyze the performance of three specific computation algorithms that may be used in specific practical situations, namely, the tree algorithm, multihop transmission, and the Ripple algorithm (a type of gossip algorithm), and obtain scaling laws for the computation time and energy expenditure as n rarr infin. In particular, we show that the computation time for these algorithms scales as Theta(radicn/lo- g n), Theta(n), and Theta(radicn log n), respectively, whereas the energy expended scales as , Theta(n), Theta(radicn/log n), and Theta(radicn log n), respectively. Finally, simulation results are provided to show that our analysis indeed captures the correct scaling. The simulations also yield estimates of the constant multipliers in the scaling laws. Our analyses throughout assume a centralized optimal scheduler, and hence, our results can be viewed as providing bounds for the performance with practical distributed schedulers.
Resumo:
The Lovasz θ function of a graph, is a fundamental tool in combinatorial optimization and approximation algorithms. Computing θ involves solving a SDP and is extremely expensive even for moderately sized graphs. In this paper we establish that the Lovasz θ function is equivalent to a kernel learning problem related to one class SVM. This interesting connection opens up many opportunities bridging graph theoretic algorithms and machine learning. We show that there exist graphs, which we call SVM−θ graphs, on which the Lovasz θ function can be approximated well by a one-class SVM. This leads to a novel use of SVM techniques to solve algorithmic problems in large graphs e.g. identifying a planted clique of size Θ(n√) in a random graph G(n,12). A classic approach for this problem involves computing the θ function, however it is not scalable due to SDP computation. We show that the random graph with a planted clique is an example of SVM−θ graph, and as a consequence a SVM based approach easily identifies the clique in large graphs and is competitive with the state-of-the-art. Further, we introduce the notion of a ''common orthogonal labeling'' which extends the notion of a ''orthogonal labelling of a single graph (used in defining the θ function) to multiple graphs. The problem of finding the optimal common orthogonal labelling is cast as a Multiple Kernel Learning problem and is used to identify a large common dense region in multiple graphs. The proposed algorithm achieves an order of magnitude scalability compared to the state of the art.