852 resultados para Random effect model
Resumo:
Poisson distribution has often been used for count like accident data. Negative Binomial (NB) distribution has been adopted in the count data to take care of the over-dispersion problem. However, Poisson and NB distributions are incapable of taking into account some unobserved heterogeneities due to spatial and temporal effects of accident data. To overcome this problem, Random Effect models have been developed. Again another challenge with existing traffic accident prediction models is the distribution of excess zero accident observations in some accident data. Although Zero-Inflated Poisson (ZIP) model is capable of handling the dual-state system in accident data with excess zero observations, it does not accommodate the within-location correlation and between-location correlation heterogeneities which are the basic motivations for the need of the Random Effect models. This paper proposes an effective way of fitting ZIP model with location specific random effects and for model calibration and assessment the Bayesian analysis is recommended.
Resumo:
In non-linear random effects some attention has been very recently devoted to the analysis ofsuitable transformation of the response variables separately (Taylor 1996) or not (Oberg and Davidian 2000) from the transformations of the covariates and, as far as we know, no investigation has been carried out on the choice of link function in such models. In our study we consider the use of a random effect model when a parameterized family of links (Aranda-Ordaz 1981, Prentice 1996, Pregibon 1980, Stukel 1988 and Czado 1997) is introduced. We point out the advantages and the drawbacks associated with the choice of this data-driven kind of modeling. Difficulties in the interpretation of regression parameters, and therefore in understanding the influence of covariates, as well as problems related to loss of efficiency of estimates and overfitting, are discussed. A case study on radiotherapy usage in breast cancer treatment is discussed.
Resumo:
In this paper, we propose a random intercept Poisson model in which the random effect is assumed to follow a generalized log-gamma (GLG) distribution. This random effect accommodates (or captures) the overdispersion in the counts and induces within-cluster correlation. We derive the first two moments for the marginal distribution as well as the intraclass correlation. Even though numerical integration methods are, in general, required for deriving the marginal models, we obtain the multivariate negative binomial model from a particular parameter setting of the hierarchical model. An iterative process is derived for obtaining the maximum likelihood estimates for the parameters in the multivariate negative binomial model. Residual analysis is proposed and two applications with real data are given for illustration. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Random effect models have been widely applied in many fields of research. However, models with uncertain design matrices for random effects have been little investigated before. In some applications with such problems, an expectation method has been used for simplicity. This method does not include the extra information of uncertainty in the design matrix is not included. The closed solution for this problem is generally difficult to attain. We therefore propose an two-step algorithm for estimating the parameters, especially the variance components in the model. The implementation is based on Monte Carlo approximation and a Newton-Raphson-based EM algorithm. As an example, a simulated genetics dataset was analyzed. The results showed that the proportion of the total variance explained by the random effects was accurately estimated, which was highly underestimated by the expectation method. By introducing heuristic search and optimization methods, the algorithm can possibly be developed to infer the 'model-based' best design matrix and the corresponding best estimates.
Nonparametric Inference Procedure For Percentiles of the Random Effect Distribution in Meta Analysis
Resumo:
In this paper, we consider a time-space fractional diffusion equation of distributed order (TSFDEDO). The TSFDEDO is obtained from the standard advection-dispersion equation by replacing the first-order time derivative by the Caputo fractional derivative of order α∈(0,1], the first-order and second-order space derivatives by the Riesz fractional derivatives of orders β 1∈(0,1) and β 2∈(1,2], respectively. We derive the fundamental solution for the TSFDEDO with an initial condition (TSFDEDO-IC). The fundamental solution can be interpreted as a spatial probability density function evolving in time. We also investigate a discrete random walk model based on an explicit finite difference approximation for the TSFDEDO-IC.
Resumo:
In continuum one-dimensional space, a coupled directed continuous time random walk model is proposed, where the random walker jumps toward one direction and the waiting time between jumps affects the subsequent jump. In the proposed model, the Laplace-Laplace transform of the probability density function P(x,t) of finding the walker at position at time is completely determined by the Laplace transform of the probability density function φ(t) of the waiting time. In terms of the probability density function of the waiting time in the Laplace domain, the limit distribution of the random process and the corresponding evolving equations are derived.
Resumo:
We study the relaxation of a degenerate two-level system interacting with a heat bath, assuming a random-matrix model for the system-bath interaction. For times larger than the duration of a collision and smaller than the Poincaré recurrence time, the survival probability of still finding the system at timet in the same state in which it was prepared att=0 is exactly calculated.
Resumo:
A discrete-time dynamics of a non-Markovian random walker is analyzed using a minimal model where memory of the past drives the present dynamics. In recent work N. Kumar et al., Phys. Rev. E 82, 021101 (2010)] we proposed a model that exhibits asymptotic superdiffusion, normal diffusion, and subdiffusion with the sweep of a single parameter. Here we propose an even simpler model, with minimal options for the walker: either move forward or stay at rest. We show that this model can also give rise to diffusive, subdiffusive, and superdiffusive dynamics at long times as a single parameter is varied. We show that in order to have subdiffusive dynamics, the memory of the rest states must be perfectly correlated with the present dynamics. We show explicitly that if this condition is not satisfied in a unidirectional walk, the dynamics is only either diffusive or superdiffusive (but not subdiffusive) at long times.
Resumo:
10 p.