1000 resultados para RIFAMPICINA. 3-FORMILRIFAMICINA. RIFAMPICINA QUINONA. RIFAMPICINA N-ÓXIDO. ANÁLISE TÉRMICA
Resumo:
Since its synthesis over 48 years rifampicin has been extensively studied. The literature reports the characterization of thermal events for rifampicin in nitrogen atmosphere, however, no characterization in synthetic air atmosphere. This paper aims to contribute to the thermal study of rifampicin through thermal (TG / DTG, DTA, DSC and DSC - FOTOVISUAL ) and non-thermal (HPLC, XRPD , IR - FTIR , PCA) and its main degradation products ( rifampicin quinone , rifampicin N-oxide 3- formylrifamicin). Rifampicin study was characterized as polymorph form II from techniques DSC, IR and XRPD. TG curves for rifampicin in synthetic air atmosphere showed higher thermal stability than those in N2, when analyzed Ti and Ea. There was characterized as overlapping events melting and recrystallization under N2 with weight loss in the TG curve, suggesting concomitant decomposition. Images DSCFotovisual showed no fusion event and showed darkening of the sample during analysis. The DTA curve in synthetic air atmosphere was visually different from DTA and DSC curves under N2, suggesting the absence of recrystallization and melting or presence only decomposition. The IV - FTIR analysis along with PCA analysis and HPLC and thermal data suggest that rifampicin for their fusion is concomitant decomposition of the sample in N2 and fusion events and recrystallization do not occur in synthetic air atmosphere. Decomposition products studied in an air atmosphere showed no melting event and presented simultaneously to the decomposition initiation of heating after process loss of water and / or solvent, varying the Ti initiating events. The Coats - Redfern , Madsudhanan , Van Krevelen and Herwitz - Mertzger kinetic parameters for samples , through the methods of OZAWA , in an atmosphere of synthetic air and / or N2 rifampicin proved more stable than its degradation products . The kinetic data showed good correlation between the different models employed. In this way we contribute to obtaining information that may assist studies of pharmaceutical compatibility and stability of substances
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
According to the global framework regarding new cases of tuberculosis, Brazil appears at the 18th place. Thus, the Ministry of Health has defined this disease as a priority in the governmental policies. As a consequence, studies concerning treatment and prevention have increased. Fixed-dose combination formulations (FDC) are recognized as beneficial and are recommended by WHO, but they present instability and loss on rifampicin bioavailability. The main purpose of this work was to carry out a pre-formulation study with the schedule 1 tuberculosis treatment drugs: rifampicin, isoniazid, pyrazinamide and ethambutol and pharmaceutical excipients (lactose, cellulose, magnesium stearate and talc), in order to develop an FDC product (150 mg of rifampicin + 75 mg of isoniazid + 400 mg of pyrazinamide + 250 mg of ethambutol). The studies consisted of the determination of particle size and distribution (Ferret s diameter) and shape through optical microscopy, as well as rheological and technological properties (bulk and tapped densities, Hausner Factor, Carr s Index, repose angle and flux rate) and interactions among drugs and drug excipient through thermal analysis (DSC, DTA, TG and your derivate). The results showed that, except isoniazid, the other drugs presented poor rheological properties, determined by the physical characteristics of the particles: small size and rod like particles shape for rifampicin; rectangular shape for pyrazinamide and ethambutol, beyond its low density. The 4 drug mixture also not presented flowability, particularly that one containing drug quantity indicated for the formulation of FDC products. In this mixture, isoniazid, that has the best flowability, was added in a lower concentration. The addition of microcrystalline cellulose, magnesium stearate and talc to the drug mixtures improved flowability properties. In DSC analysis probable interactions among drugs were found, supporting the hypothesis of ethambutol and pyrazinamide catalysis of the rifampicin-isoniazid reaction resulting in 3- formylrifamycin isonicotinyl hydrazone (HYD) as a degradation product. In the mixtures containing lactose Supertab® DSC curves evidenced incompatibility among drugs and excipient. In the DSC curves of mixtures containing cellulose MC101®, magnesium stearate and talc, no alterations were observed comparing to the drug profiles. The TG/DTG of the binary and ternary mixtures curves showed different thermogravimetrics profiles relating that observed to the drug isolated, with the thermal decomposition early supporting the evidences of incompatibilities showed in the DSC and DTA curves
Resumo:
The thermal behavior of two polymorphic forms of rifampicin was studied by DSC and TG/DTG. The thermoanalytical results clearly showed the differences between the two crystalline forms. Polymorph I was the most thermally stable form, the DSC curve showed no fusion for this species and the thermal decomposition process occurred around 245 ºC. The DSC curve of polymorph II showed two consecutive events, an endothermic event (Tpeak = 193.9 ºC) and one exothermic event (Tpeak = 209.4 ºC), due to a melting process followed by recrystallization, which was attributed to the conversion of form II to form I. Isothermal and non-isothermal thermogravimetric methods were used to determine the kinetic parameters of the thermal decomposition process. For non-isothermal experiments, the activation energy (Ea) was derived from the plot of Log β vs 1/T, yielding values for polymorph form I and II of 154 and 123 kJ mol-1, respectively. In the isothermal experiments, the Ea was obtained from the plot of lnt vs 1/T at a constant conversion level. The mean values found for form I and form II were 137 and 144 kJ mol-1, respectively.
Resumo:
Clays are natural materials that have great potential for use as excipients for solid dosage forms. Palygorskite is a type of clay that has hydrophilic properties as well as a large surface area, which could contribute to the dissolution of drugs. Thus, the present study aims to evaluate the use of palygorskite clay, from Piaui (Northeast region of Brazil), as a pharmaceutical excipient for solid dosage forms, using rifampicin and isoniazid as the model drugs. The former is a poorly soluble drug often associated with isoniazid for tuberculosis treatment. Palygorskite was characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), particle size, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and specific surface area (BET). The rheological and technological properties of palygorskite were determined and compared to those of talc, magnesium stearate and Aersosil 200. Mixtures between drugs and palygorskite were analyzed by differential scanning calorimetry (DSC), thermogravimetric analysis (TG) combined with thermal analysis (DTA) and Fourier Transform Infrared Spectroscopy (FT-IR), where the results were compared with those of the individual compounds. In addition, dissolution studies of solid dispersions and capsules containing the drugs, mixed with either palygorskite or a mixture of talc and magnesium stearate, were performed. The results showed that palygorskite has small particles with a high surface area. Its rheological characteristics were better than those of others commonly used glidants and lubricants. There was no interaction between palygorskite and the drugs (rifampicin and isoniazid). Among the dispersions studied, the mixture with palygorskite (5%) showed the highest drug dissolution when compared to other excipients. The dissolution of the rifampicin capsules containing palygosrkite was faster in higher concentrations. However, these differences were statistically different only in the first minutes of the dissolution experiment. The dissolution profile of isoniazid was also statistically different on the initial part of the experiment. The formulations prepared with isoniazid and palygorskite showed higher drug dissolution, but it was in descending order of concentration. According to these results, the palygorskite clay used in this study has great potential for application as an excipient for solid dosage forms
Resumo:
Bifunctional catalysts based on zircon oxide modified by tungsten (W = 10, 15 and 20 %) and by molybdenum oxide (Mo= 10, 15 e 20 %) containg platinum (Pt = 1%) were prepared by the polymeric precursor method. For comparison, catalysts the tungsten base was also prepared by the impregnation method. After calcinations at 600, 700 and 800 ºC, the catalysts were characterized by X-ray diffraction, fourier-transform infrared spectroscopy, thermogravimetric and differential thermal analysis, nitrogen adsorption and scanning electron microscopy. The profile of metals reduction was determined by temperature programmed reduction. The synthesized catalysts were tested in n-heptane isomerization. X-ray diffractogram of the Pt/WOx-ZrO2 and Pt/MoOx-ZrO2 catalysts revealed the presence of tetragonal ZrO2 and platinum metallic phases in all calcined samples. Diffraction peaks due WO3 and ZrO2 monoclinic also were observed in some samples of the Pt/WOx-ZrO2 catalysts. In the Pt/MoOx-ZrO2 catalysts also were observed diffraction peaks due ZrO2 monoclinic and Zr(MoO4)2 oxide. These phases contained on Pt/WOx-ZrO2 and Pt/MoOx-ZrO2 catalysts varied in accordance with the W or Mo loading and in accordance with the calcination temperature. The infrared spectra showed absorption bands due O-W-O and W=O bonds in the Pt/WOx-ZrO2 catalysts and due O-Mo-O, Mo=O and Mo-O bonds in the Pt/MoOx-ZrO2 catalysts. Specific surface area for Pt/WOx-ZrO2 catalysts varied from 30-160 m2 g-1 and for the Pt/MoOx-ZrO2 catalysts varied from 10-120 m2 g-1. The metals loading (W or Mo) and the calcination temperature influence directly in the specific surface area of the samples. The reduction profile of Pt/WOx-ZrO2 catalysts showed two peaks at lower temperatures, which are attributed to platinum reduction. The reduction of WOx species was evidenced by two reduction peak at high temperatures. In the case of Pt/MoOx-ZrO2 catalysts, the reduction profile showed three reduction events, which are attributed to reduction of MoOx species deposited on the support and in some samples one of the peak is related to the reduction of Zr(MoO4)2 oxide. Pt/WOx-ZrO2 catalysts were active in the n-heptane isomerization with high selectivity to 3-methyl-hexane, 2,3- dimethyl-pentane, 2-methyl-hexane among other branched hydrocarbons. The Pt/MoOx-ZrO2 catalysts practically didn't present activity for the n-heptane isomerization, generating mainly products originating from the catalytic cracking
Resumo:
Pós-graduação em Química - IQ
Resumo:
Dissertação para obtenção do Grau de Mestre em Genética Molecular e Biomedicina
Resumo:
Trypanosoma cruzi es el agente causal de la enfermedad de Chagas, un problema de salud importante en América Latina, así como también en América Central, ya que causa infección crónica afectando a millones de personas [1]. Durante esta enfermedad se han descripto varias alteraciones de la respuesta inmune, entre ellas una severa inmunosupresión durante la etapa aguda de la infección, tanto en humanos como en ratones. Células T provenientes de ratones infectados activadas in vitro, muestran reducción en la respuesta proliferativa a mitógenos, característica de un estado de inmunosupresión [2-4]. La falla del sistema inmune durante estadios tempranos de la infección probablemente colabore con la diseminación y el establecimiento del parásito. Un gran número de estudios se han focalizado en la identificación de mecanismos moleculares responsables del fenómeno de inmunosupresión, entre los mecanismos citados se ha demostrado presencia de células supresoras [5-9], factores inmunosupresores presentes en el parásito [2, 3, 10-13], producción excesiva de óxido nítrico [14], disminuida producción de IL-2 y reducida expresión del receptor de IL2 en células de bazo de animales infectados [9, 15-17]. Muchos de estos mecanismos han sido exhaustivamente investigados, sin embargo no está del todo claro si existen mecanismos adicionales involucrados en la inmunosupresión de la célula T. Adicionalmente, en los últimos años nuevas moléculas que median la regulación negativa de la célula T, entre las cuales están PD-1/PD1-L [18], arginasa [19] y E3 ubiquitina ligasas [20-22], han sido reportadas durante inmunosupresión en diversas infecciones. Trypanosoma cruzi, the etiological agent of Chagas’ disease, is parasite causing chronic infections in human and other mammalian species. There is an important immunosupresion during the acute phase of the infection that contribute to the dissemination and installation of the parasite. Several studies have been focused on identifying the mechanisms involved in the immunosupresion; however it is not clear if there are additional mechanisms implicated. In addition, during the last years new molecules involved in the negative T cell regulation such as PD-1/PD1-L pathway and E3 ubiquitin ligases (E3-Ub-Lig) have been reported. It has been demonstrated, that E3-Ub-Lig control the amount and localization of intracellular signal mediators, limiting T cell activation. Moreover, these mechanisms mediate the immunosupresion observed during several infections leading to the persistence of the pathogen in the host. In this project the role of E3-Ub-Lig on the T cell immunosupresion and hipo-response mechanisms observed during T. cruzi infection will be studied. On the other hand, it has been reported that some pathogens release proteins with E3-Ub-Lig activity modifying the ubiquitination process to promote their survival and replication in the host. Recently, a protein with E3-Ub-Lig activity was identified in T. cruzi, however its target molecule has not been discovered yet. Therefore, one of the aims of this project consists on studying different potential target molecules for this novel E3-Ub-Lig. In addition, during the last years, important progress has been done about the biological rol of PD-1/PD1-L pathway on the regulation of the immune response in several infections. However, it is not well known how PD-1/PD1-L pathway transduces signals at intracelular level to block T cell response. Because of this, it is interesting to study if there is any relation between the PD-1/PD1-L pathway and E3-Ub-Lig on the mechanism of T cell immunosupression during T. cruzi infection.
Resumo:
FUNDAMENTO: Insuficiência cardíaca (IC) está associada com aumento da quimio-sensibilidade periférica e central em repouso, que pode estar correlacionada com um aumento na resposta ventilatória durante exercício. Entretanto, SUS sensibilidade na IC durante o exercício ainda não foi reportada. OBJETIVO: Testar se o estímulo dos quimiorreceptores centrais e periféricos em pacientes com IC pode modular respostas ventilatórias, cronotrópicas e neurohormonais durante exercício submáximo. MÉTODOS: Investigamos a quimio-sensibilidade central e periférica em 15 pacientes com insuficiência cardíaca (IC) e 7 controles normais (C), comparando a resposta durante 3 testes de caminhada de 6 minutos (TC6M), realizado em esteira ergométrica com: ar ambiente, em hipóxia e em hipercapnia (em ordem randômica). RESULTADOS: FR em ar ambiente nos grupos C e IC foi 17±2 e 22±2 (p<,0001); em hipóxia, foi 17±1 e 23±2 (p<,02); com CO25% foi 20±2 e 22±5 (p<,02). Volume tidal (VT) ou corrente em ar ambiente foi 1,25±0,17 e 1,08±0,19 (p<,01); em hipóxia 1,65±0,34 e 1,2±0,2(p<,0001); com CO25% 1,55±0,46 e 1,29±0,39 (p<,0001). Em repouso, o aumento na IC foi maior para VE (C 33±40%, IC 62±94%, p<,01), FC(C 7±10%, IC 10±10%, p<0,05) em repouso. Durante a hipóxia, o aumento durante o exercício na IC foi maior para FR (C 1±4, IC 11±6,p<,05), FC (C 12±2, IC 14±3, p<,05), VE/VO2 (C -4±18%, IC 24±21%, p<,01), FC/VO2 (C -26±11%, IC 11±5%, p<,01), VE/DC (C 36±10%, 46±14, p<,05% ) and FC/DC (C 18±8%, HF 29±11, p<,01). Durante exercício em hipóxia no grupo IC, o NO diminuiu e os níveis de IL-6 e aldosterona aumentaram. Os níveis neurohormonais permaneceram inalterados no grupo C. CONCLUSÃO: A quimio-sensibilidade central e a periférica durante o exercício estão aumentadas na IC e podem modular padrões respiratórios, cronotrópicos cardíacos e atividade neurohormonal durante exercício.
Resumo:
The mixed metal oxides constitute an important class of catalytic materials widely investigated in different fields of applications. Studies of rare earth nickelates have been carried by several researchers in order to investigate the structural stability afforded by oxide formed and the existence of catalytic properties at room temperature. So, this study aims synthesize the nanosized catalyst of nickelate of lanthanum doped with strontium (La(1-x)SrxNiO4-d; x = 0,2 and 0,3), through the Pechini method and your characterization for subsequent application in the desulfurization of thiophene reaction. The precursor solutions were calcined at 300ºC/2h for pyrolysis of polyester and later calcinations occurred at temperatures of 500 - 1000°C. The resulting powders were characterized by thermogravimetric analysis (TG / DTG), surface area for adsorption of N2 by BET method, X-ray diffraction (XRD), scanning electron microscopy (HR_SEM) and spectrometry dispersive energy (EDS). The results of XRD had show that the perovskites obtained consist of two phases (LSN and NiO) and from 700ºC have crystalline structure. The results of SEM evidenced the obtainment of nanometric powders. The results of BET show that the powders have surface area within the range used in catalysis (5-50m2/g). The characterization of active sites was performed by reaction of desulfurization of thiophene at room temperature and 200ºC, the relation F/W equal to 0,7 mol h-1mcat -1. The products of the reaction were separated by gas chromatography and identified by the selective detection PFPD sulfur. All samples had presented conversion above 95%
Produção Fecal e Fluxo Duodenal de Matéria Seca e Matéria Orgânica Estimados por Meio de Indicadores
Resumo:
O objetivo deste trabalho foi comparar os indicadores internos, fibra em detergente neutro e fibra em detergente ácido indigestíveis, obtidos após 144h de incubação in vitro e in situ (FDNiv; FDNis; FDAiv; FDAis) com o indicador externo, o óxido crômico (Cr2O3), para estimativas da produção fecal, do fluxo duodenal de matéria seca e matéria orgânica em novilhos mestiços (HxZ) confinados. Foram utilizadas dietas à base de silagens de milho, de raspa e de casca de mandioca, e também de cana-de-açúcar ensilada com polpa cítrica peletizada. Os novilhos foram castrados e canulados no rúmen e no duodeno. O período experimental teve 11 dias de adaptação às dietas e 8 dias de coleta. O delineamento experimental foi o quadrado latino (4x4), com quatro tratamentos, num arranjo em parcela subdividida, sendo as dietas estudadas nas parcelas, e os indicadores nas subparcelas. Os resultados obtidos em percentagem do peso vivo para a estimativa da produção fecal, utilizando-se os diferentes indicadores, mostraram que a FDAiv (0,88 %), a FDAis (0,85 %) e o Cr2O3 (0,99 %), embora com diferenças significativas, podem ser utilizados pelos resultados biologicamente consistentes. Para estimar o fluxo duodenal de matéria seca e matéria orgânica, foram utilizados os valores de produção fecal obtidos com a FDAiv. Os indicadores internos não apresentaram diferenças entre si para o fluxo duodenal de matéria seca, com média de 3,29 kg/dia, porém o óxido crômico superestimou o fluxo (4,95 kg/dia). Para o fluxo duodenal de matéria orgânica não houve diferença entre os indicadores com média de 2,73 kg/dia.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Several studies are carried out with aim to establish parameters to determine biologic behavior of oral squamous cell carcinoma, in order this neoplasm presents high rates of morbidity and mortality. The purpose of present research was to performe a clinic, morphologic and immunohistochemical analysis by the expression of galectins 1, 3, 4 and 7 in 65 cases of tongue squamous cell carcinoma, correlating this expression with clinics (outcome of the disease, metastasis and clinical staging) and morphologic parameters (malignancy histologic gradation system). The clinical and morphologic parameters analysed and expression of galectins 1, 3, 4 and 7 were submitted to statistical analysis (Qui2 test), observing that can be utilized as indicators of the biological behavior of the tongue squamous cell carcinoma. The galectin 1 was expressed in 87,7% of cases studied and it exhibit statistically significant correlation with metastasis (p=0,033) and clinical staging (p=0,016), it is located mostly in the citoplasm of the stomal cells. The immunoexpression of galectin 3 in 87,7% of cases was correlated with the presence of metastasis (p=0,033) and malignancy histological gradation system (p=0,031), observed, mostly of cases, in tongue squamous cell carcinoma of malignancy high grading. The galectin 4 showed no statistical significance to any of the parameters evaluated. The expression of galectin 7 in 73,8% of cases showed statistically significant correlation with the malignancy histologic grading (p=0,005), which is marking exclusively found in neoplastic epithelial cells, in the mostly of cases, it is found in cytoplasm and membrane (50%). The expressive immunopositivy of the galectins 1, 3 and 7, observed in this research, leads us to suggest a broad participation of these proteins in oral carcinogenesis, and its possible use as markers of biological behavior and tumor progression in cases of squamous cell carcinoma of the tongue
Resumo:
TiTanate NanoTubes (TTNT) were synthesized by hydrothermal alkali treatment of TiO2 anatase followed by repeated washings with distinct degrees of proton exchange. TTNT samples with different sodium contents were characterized, as synthesized and after heattreatment (200-800ºC), by X-ray diffraction, scanning and transmission electron microscopy, electron diffraction, thermal analysis, nitrogen adsorption and spectroscopic techniques like FTIR and UV-Vis diffuse reflectance. It was demonstrated that TTNTs consist of trititanate structure with general formula NaxH2−xTi3O7·nH2O, retaining interlayer water in its multiwalled structure. The removal of sodium reduces the amount of water and contracts the interlayer space leading, combined with other factors, to increased specific surface area and mesopore volume. TTNTs are mesoporous materials with two main contributions: pores smaller than 10 nm due to the inner volume of nanotubes and larger pores within 5-60 nm attributed to the interparticles space. Chemical composition and crystal structure of TTNTs do not depend on the average crystal size of the precursor TiO2-anatase, but this parameter affects significantly the morphology and textural properties of the nanostructured product. Such dependence has been rationalized using a dissolution-recrystallization mechanism, which takes into account the dissolution rate of the starting anatase and its influence on the relative rates of growth and curving of intermediate nanosheets. The thermal stability of TTNT is defined by the sodium content and in a lower extent by the crystallinity of the starting anatase. It has been demonstrated that after losing interlayer water within the range 100-200ºC, TTNT transforms, at least partially, into an intermediate hexatitanate NaxH2−xTi6O13 still retaining the nanotubular morphology. Further thermal transformation of the nanostructured tri- and hexatitanates occurs at higher or lower temperature and follows different routes depending on the sodium content in the structure. At high sodium load (water washed samples) they sinter and grow towards bigger crystals of Na2Ti3O7 and Na2Ti6O13 in the form of rods and ribbons. In contrast, protonated TTNTs evolve to nanotubes of TiO2(B), which easily convert to anatase nanorods above 400ºC. Besides hydroxyls and Lewis acidity typical of titanium oxides, TTNTs show a small contribution of protonic acidity capable of coordinating with pyridine at 150ºC, which is lost after calcination and conversion into anatase. The isoeletric point of TTNTs was measured within the range 2.5-4.0, indicating behavior of a weak acid. Despite displaying semiconductor characteristics exhibiting typical absorption in the UV-Vis spectrum with estimated bandgap energy slightly higher than that of its TiO2 precursor, TTNTs showed very low performance in the photocatalytic degradation of cationic and anionic dyes. It was concluded that the basic reason resides in its layered titanate structure, which in comparison with the TiO2 form would be more prone to the so undesired electron-hole pair recombination, thus inhibiting the photooxidation reactions. After calcination of the protonated TTNT into anatase nanorods, the photocatalytic activity improved but not to the same level as that exhibited by its precursor anatase