76 resultados para Quimiocina CXCL12


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Colorectal cancer is one of the most prevalent cancers in developed countries. However, the genetic factors influencing its appearance remain far from being fully characterized. Recently, a G>A functional transition mapping the 3' untranslated region of the CXCL12 gene (rs1801157) has been found to be under-represented among rectal cancer patients when compared to colon cancer patients from a Swedish series. Here we present the results from an independent analysis of CXCL12 rs1801157 in a larger CRC series of Spanish origin in order to analyse the robustness of this association within a different European population. No significant difference was observed between controls and colon or rectal cancer patients. We were also unable to find a correlation between rs1801157 and different prognostic markers such as metastasis development or disease-free survival time. The epidemiologic data involving CXCL12 rs1801157 in colorectal cancer risk are discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Odontologia - FOA

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of chemokines has been extensively analyzed both in cancer risk and tumor progression. Among different cytokines, CXCR4 and its ligand CXCL12 have been recently subjected to a closer examination. The single-nucleotide polymorphism (SNP) rs1801157 (previously known as CXCL12-A/SDF1-3`A) in the CXCL12 gene and the relative expression of mRNA CXCL12 in peripheral blood were assessed in breast cancer patients, since the chemokine CXCL12 and its receptor CXCR4 regulate leukocyte trafficking and many essential biological processes, including tumor growth, angiogenesis and metastasis of different types of tumors. Genotyping was performed by PCR-RFLP (polymerase chain reaction followed by restriction fragment length polymorphism) using MspI restriction enzyme and the expression analyses by quantitative RT-PCR. No difference in GG genotype and allele A carrier frequencies were observed between breast cancer patients and healthy blood donors and nor when CXCL12 mRNA expression was assessed among patients with different tumor stages. However a significant difference was observed when CXCL12 mRNA relative expression was analyzed in breast cancer patients in accordance to the presence or absence of the CXCL12 rs1801157 allele A. Allele A breast cancer patients presented a mRNA CXCL12 expression about 2.1-fold smaller than GG breast cancer patients. Estrogen positive patients presenting CXCL12 allele A presented a significantly lower expression of CXCL12 in peripheral blood (p = 0.039) than GG hormone positive patients. Our findings demonstrated that allele A is associated with low expression of CXCL12 in the peripheral blood from ER-positive breast cancer patients, which suggests implications on breast cancer clinical outcome. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemokines and their receptors regulate the trafficking of immune cells during their development, inflammation, and tissue repair. The single-nucleotide polymorphism (SNP) rs1801157 (previously known as CXCL12-A/ stromal cell-derived factor-1 (SDF1)-3`A) in CXCL12/SDF1 gene was assessed in breast cancer, Hodgkin`s lymphoma (HL), and non-Hodgkin`s lymphoma (NHL), since the chemokine CXCL12, previously known as SDF1, and its receptor CXCR4 regulate leukocyte trafficking and many essential biological processes, including tumor growth, angiogenesis, and metastasis of different types of tumors. Genotyping was performed by PCR-RFLP (polymerase chain reaction followed by restriction fragment length polymorphism) using a restriction enzyme Hpall cleavage. No significant difference was observed in genotype distribution between breast cancer patients (GG: 57.3%; GA: 39.8%; AA: 2.9%) and healthy female controls (GG: 62.9%; GA: 33%; AA: 4.1%) nor between HL patients (GG: 61.1%; GA:27.8%; AA: 11.1%) and healthy controls (GG: 65.6%; GA: 28.9%; AA: 5.5%), whereas a significant difference was observed in genotype distribution between NHL patients (GG: 51.4%; GA: 47.1%; AA: 1.5%) and healthy controls (GG: 65.6%; GA: 28.9%; AA: 5.5%). Further studies will be necessary to elucidate the cancer chemokine network. However, this study suggests that CXCL12 rs1801157 polymorphism may have important implications in the pathogenesis of NHL. J. Clin. Lab. Anal. 23:387-393, 2009. (C) 2009 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Fibroblasts are the most abundant cells in dental pulp. To investigate their capacity to produce the chemokines CCL3, CXCL8, and CXCL12 as well as nitric oxide (NO), we evaluated the production of these mediators in supernatants of cultured human dental pulp fibroblasts (HDPF) stimulated by heat-killed Enterococcus faecalis (HKEF). Methods: Primary cultures of HDPF were stimulated with medium alone or HKEF (1:1, 10:1, or 100:1 bacteria:fibroblast) for 1, 6, and 24 hours. Chemokines and NO were assessed through enzyme-linked immunosorbent assay and Griess reaction, respectively. Statistical analysis was performed by using analysis of variance and Tukey post test. Results: CCL3 was not detected, whereas constitutive CXCL8 was not affected. Production of CXCL12 was increased at 1 and 6 hours, and NO was increased at the concentration of 1:1 bacteria:fibroblast at 24 hours. Viability and proliferation assays did not reveal cell number differences. Conclusions: These findings demonstrate that heat-killed E. faecalis is able to increase production of CXCL12 and NO by HDPF. (J Endod 2010;36:91-94)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Le neuroblastome (NB) est la tumeur maligne solide extra-crânienne la plus fréquente chez le jeune enfant. L'évolution clinique est très hétérogène, et les NBs de haut risque échappent encore aux traitements les plus agressifs. Diverses études ont montré que les chimiokines et leurs récepteurs, particulièrement l'axe CXCR4/CXCL12, sont impliqués dans la progression tumorale. Dans le NB, l'expression de CXCR4 est corrélée à un pronostic défavorable. De récentes études ont identifié l'expression d'un autre récepteur, CXCR7, présentant une forte affinité pour le ligand CXCL12. Cependant, son implication potentielle dans l'agressivité des NBs reste encore inconnue. Notre étude a pour objectif d'analyser le rôle de CXCR7 dans le comportement malin du NB, et son influence sur la fonctionnalité de l'axe CXCR4/CXCL12. Les profils d'expression de CXCR7 et CXCL12 ont d'abord été évalués sur un large échantillonnage de tissus de NB, incluant des tissus de tumeurs primaires et de métastases, provenant de 156 patients. CXCL12 est fortement détecté dans les vaisseaux et le stroma des tumeurs. Contrairement à CXCR4, CXCR7 n'est que très faiblement exprimé par les tumeurs indifférenciées. Néanmoins, l'expression de CXCR7 augmente dans les tumeurs matures, et se trouve spécifiquement associée aux cellules neurales différentiées, telles que les cellules ganglionnaires. L'expression de CXCR7 est faiblement détectée dans un nombre réduit de lignées de NB, mais peut-être induite suite à des traitements avec des agents de différenciation in vitro. La surexpression de CXCR7, CXCR4 et une combinaison des deux récepteurs dans les lignées IGR-NB8 et SH-SY5Y a permis l'analyse de leur fonction respective. En réponse à leur ligand commun, chaque récepteur induit l'activation de la voie ERK 1/2, mais pas celle de la voie Akt. Contrairement à CXCR4, l'expression exogène de CXCR7 réduit fortement la prolifération des cellules de NB in vitro, et in vivo dans un modèle d'injection sous-cutanée de. souris immunodéprimées. CXCR7 altère également la migration des cellules induite par l'axe CXCR4/CXCL12. De plus, l'utilisation d'un modèle orthotopique murin a démontré que la croissance tumorale induite par CXCR4 peut être fortement retardée lorsque les deux récepteurs sont co-exprimés dans les cellules de NB. Aucune induction de métastases n'a pu être observée dans ce modèle. Cette étude a permis d'identifier un profil d'expression opposé et des rôles distincts pour CXCR7 et CXCR4 dans le NB. En effet, contrairement à CXCR4, CXCR7 présente des propriétés non tumorigéniques et peut être associé au processus de différenciation du NB. De plus, nos analyses suggèrent que CXCR7 peut réguler les mécanismes induits par CXCR4. Ces données ouvrent donc de nouvelles perspectives de recherche quant au rôle de l'axe CXCR7/CXCR4/CXCL12 dans la biologie des NBs. - Neuroblastoma (NB) is a typical childhood and heterogeneous neoplasm for which efficient targeted therapy for high-risk tumours is not yet identified. The chemokine CXCL12, and its receptors CXCR4 and CXCR7 have been involved in tumour progression and dissemination in various cancer models. In the context of NB, CXCR4 expression is associated to undifferentiated tumours and poor prognosis, while the role of CXCR7, the recently identified second CXCL12 receptor, has not yet been elucidated. In this report, CXCR7 and CXCL12 expression were evaluated using a tissue micro-array (TMA) including 156 primary and 56 metastatic NB tissues. CXCL12 was found to be highly associated to NB vascular and stromal structures. In opposite to the CXCR4 expression pattern, the neural-associated CXCR7 expression was extremely low in undifferentiated tumours, while its expression increased in maturated tissues and was specifically associated to the differentiated neural tumour cells. As determined by RT-PCR, CXCR7 expression was only found in a minority of NB cell lines. Moreover, its expression in two CXCR7-negative NB cell lines was further induce upon treatment with differentiation agents in vitro. The relative roles of the two CXCL12 receptors was further assessed by overexpressing individual CXCR7 or CXCR4 receptors, or a combination of both, in the IGR-NB8 and SH-SY5Y NB cell lines. In vitro functional analyses indicated that, in response to their common ligand, both receptors induced activation of ERK 1/2 cascade, but not Akt signaling pathway. CXCR7 strongly reduced in vitro growth, in contrast to CXCR4. Sub-cutaneous implantations of CXCR7-expressing NB cells showed that CXCR7 also drastically reduced in vivo growth. Moreover, CXCR7 impaired CXCR4-mediated chemotaxis, and altered CXCR4-mediated growth when CXCR4/CXCR7-expressing NB cells were engrafted orthotopically in mouse adrenal gland, a CXCL12-producing environment. In such model, CXCR7 alone, or in association with CXCR4, did not induce NB cell metastatic dissemination. In conclusion, the CXCL12 receptors, CXCR7 and CXCR4, revealed opposite expression patterns and distinct functional roles in NB. While CXCR4 favours NB growth and chemotaxis, CXCR7 elicits anti-tumorigenic properties and may be associated with NB differentiation. Importantly, CXCR7 may act as a negative modulator of CXCR4 signaling, further opening new research perspectives for the role of the global CXCR7/CXCR4/CXCL12 axis in NB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuroblastoma (NB) is a typical childhood and heterogeneous neoplasm for which efficient targeted therapies for high-risk tumors are not yet identified. The chemokine CXCL12, and its receptors CXCR4 and CXCR7 have been involved in tumor progression and dissemination. While CXCR4 expression is associated to undifferentiated tumors and poor prognosis, the role of CXCR7, the recently identified second CXCL12 receptor, has not yet been elucidated in NB. In this report, CXCR7 and CXCL12 expressions were evaluated using a tissue micro-array including 156 primary and 56 metastatic NB tissues. CXCL12 was found to be highly associated to NB vascular and stromal structures. In contrast to CXCR4, CXCR7 expression was low in undifferentiated tumors, while its expression was stronger in matured tissues and specifically associated to differentiated neural tumor cells. As determined by RT-PCR, CXCR7 expression was mainly detected in N-and S-type NB cell lines, and was slightly induced upon NB cell differentiation in vitro. The relative roles of the two CXCL12 receptors were further assessed by overexpressing CXCR7 or CXCR4 receptor alone, or in combination, in the IGR-NB8 and the SH-SY5Y NB cell lines. In vitro functional analyses indicated that, in response to their common ligand, both receptors induced activation of ERK1/2 cascade, but not Akt pathway. CXCR7 strongly reduced in vitro growth, in contrast to CXCR4, and impaired CXCR4/CXCL12-mediated chemotaxis. Subcutaneous implantation of CXCR7-expressing NB cells showed that CXCR7 also significantly reduced in vivo growth. Moreover, CXCR7 affected CXCR4-mediated orthotopic growth in a CXCL12-producing environment. In such model, CXCR7, in association with CXCR4, did not induce NB cell metastatic dissemination. In conclusion, the CXCR7 and CXCR4 receptors revealed specific expression patterns and distinct functional roles in NB. Our data suggest that CXCR7 elicits anti-tumorigenic functions, and may act as a regulator of CXCR4/CXCL12-mediated signaling in NB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A variety of chemokines and inflammatory molecules are concomitantly produced at target sites of leukocyte trafficking and homing, accounting for the complex cellular responses occurring in homeostasis and inflammation. The chemokine CXCL12 plays an essential and unique role in homeostatic regulation of leukocyte traffic and tissue regeneration. The chromatin protein HMGB1 is released by dying and distressed cells, and acts as a Damage Associated Molecular Pattern or alarmin, promoting cell migration towards the site of tissue damage. We show here that HMGB1 synergises with CXCL12 by forming a heterocomplex that we characterized by NMR chemical shift mapping. The heterocomplex enhances CXCR4-induced responses on cells of the immune system, acting exclusively through the CXCL12 receptor CXCR4, and not through the HMGB1 receptors RAGE, TLR2 and TLR4. FRET analysis show that CXCL12 and CXCL12+HMGB1 promote a different conformational change in the homodimer CXCR4. The enhancement induced by HMGB1 on CXCL12-induced migration is selective, since little changes in migration of neutrophils and PreB 300.19-CCR2+ or -CCR7+ are observed towards CXCL8 and CCR2 or CCR7 agonists. HMGB1 also promotes CXCL 12 release, which is ultimately responsible for the chemoattractant activities of HMGB1. This study highlights the role of HMGB1 in promoting CXCL12-dependent cell migration, and suggests a cooperative role of these two molecules in tissue repair as well as in pathological conditions, such as rheumatoid arthritis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemokines are small chemotactic molecules widely expressed throughout the central nervous system. A number of papers, during the past few years, have suggested that they have physiological functions in addition to their roles in neuroinflammatory diseases. In this context, the best evidence concerns the CXC-chemokine stromal cell-derived factor (SDF-1alpha or CXCL12) and its receptor CXCR4, whose signalling cascade is also implicated in the glutamate release process from astrocytes. Recently, astrocytic synaptic like microvesicles (SLMVs) that express vesicular glutamate transporters (VGLUTs) and are able to release glutamate by Ca(2+)-dependent regulated exocytosis, have been described both in tissue and in cultured astrocytes. Here, in order to elucidate whether SDF-1alpha/CXCR4 system can participate to the brain fast communication systems, we investigated whether the activation of CXCR4 receptor triggers glutamate exocytosis in astrocytes. By using total internal reflection (TIRF) microscopy and the membrane-fluorescent styryl dye FM4-64, we adapted an imaging methodology recently developed to measure exocytosis and recycling in synaptic terminals, and monitored the CXCR4-mediated exocytosis of SLMVs in astrocytes. We analyzed the co-localization of VGLUT with the FM dye at single-vesicle level, and observed the kinetics of the FM dye release during single fusion events. We found that the activation of CXCR4 receptors triggered a burst of exocytosis on a millisecond time scale that involved the release of Ca(2+) from internal stores. These results support the idea that astrocytes can respond to external stimuli and communicate with the neighboring cells via fast release of glutamate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although chemokines are well established to function in immunity and endothelial cell activation and proliferation, a rapidly growing literature suggests that CXC Chemokine receptors CXCR3, CXCR4 and CXCR7 are critical in the development and progression of solid tumors. The effect of these chemokine receptors in tumorigenesis is mediated via interactions with shared ligands I-TAC (CXCL11) and SDF-1 (CXCL12). Over the last decade, CXCR4 has been extensively reported to be overexpressed in most human solid tumors and has earned considerable attention toward elucidating its role in cancer metastasis. To enrich the existing armamentarium of anti-cancerous agents, many inhibitors of CXCL12-CXCR4 axis have emerged as additional or alternative agents for neo-adjuvant treatments and even many of them are in preclinical and clinical stages of their development. However, the discovery of CXCR7 as another receptor for CXCL12 with rather high binding affinity and recent reports about its involvement in cancer progression, has questioned the potential of "selective blockade" of CXCR4 as cancer chemotherapeutics. Interestingly, CXCR7 can also bind another chemokine CXCL11, which is an established ligand for CXCR3. Recent reports have documented that CXCR3 and their ligands are overexpressed in different solid tumors and regulate tumor growth and metastasis. Therefore, it is important to consider the interactions and crosstalk between these three chemokine receptors and their ligand mediated signaling cascades for the development of effective anti-cancer therapies. Emerging evidence also indicates that these receptors are differentially expressed in tumor endothelial cells as well as in cancer stem cells, suggesting their direct role in regulating tumor angiogenesis and metastasis. In this review, we will focus on the signals mediated by this receptor trio via their shared ligands and their role in tumor growth and progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé: Le neuroblastome (NB) est un néoplasme dévastateur de la petite enfance, pour lequel il n'existe pas encore de traitement efficace. Les chimiokines et leurs récepteurs ont été impliqués dans la croissance des tumeurs et la formation de métastases, et en particulier, il a été rapporté que l'axe CXCR4/CXCL12 dirigeait le guidage, ainsi que l'invasion des cellules cancéreuses vers des organes spécifiques. Notre étude avait pour objectif d'analyser le rôle de CxCR4 exogène dans le comportement malin du NB, en étudiant la croissance des cellules tumorales, leur capacité de survie, de migration et d'invasion in vitro et en validant ces résultats grâce à un modèle orthotopique murin de la progression tumorale du NB in vivo. La surexpression de CXCR4 dans les cellules faiblement métastatiques IGR-NB8 n'exprimant pas CXCR4, a augmenté la mobilité des cellules vers CXCL12 in vitro. De plus, les cellules surexprimant CXCR4 ont été moins affectées par la privation de sérum que les cellules contrôles. Le volume des tumeurs chez les animaux greffés de manière orthotopique avec les cellules NB8-CXCR4-C3 était significativement plus élevé que celui des tumeurs issues des cellules contrôles NB8-E6 au moment du sacrifice des animaux. Cependant, aucune induction des métastases n'a été observée. La lignée cellulaire IGR-N91, aux propriétés invasives et métastatiques in vivo, exprime constitutivement des quantités modérées de CXCR4. La surexpression du récepteur dans cette lignée a accéléré la croissance tumorale in vivo, mais n'a pas augmenté pas l'occurrence des métastases. Les cellules IGR-N91, dans lesquelles l'expression de CXCR4 a été éteinte, suite à l'introduction de shRNA stable contre CXCR4, a présenté une croissance cellulaire plus lente, in vitro et in vivo. Afin d'identifier les gènes et les voies de signalisation impliqués dans les effets dépendants de CXCR4-CXCL12 dans le NB, des analyses du profil d'expression des gènes ont été effectuées sur les lignées cellulaires transfectées ou non (contrôle). Trois clones contrôles ont été comparés à 3 clones surexprimant CXCR4 pour chacune des lignées (IGR-NB8 et IGR-N91). Les analyses biostatiques ont identifié 10 gènes induits, dont CXCR4, et 31 gènes réprimés, communs entre tous les clones surexprimant CXCR4. Ces observations démontrent que la surexpression de CXCR4 dans le NB stimule la croissance, la survie et la migration chémotactique des cellules tumorales, mais est insuffisante pour induire ou augmenter leurs capacités invasives et métastatiques. Les voies de signalisation activées suite à la surexpression de CXCR4 et identifiées à travers le profil global de l'expression des gènes pourraient être des cibles intéressantes pour le développement de drogues capables d'inhiber la croissance tumorale. Abstact: Neuroblastoma (NB) is a devastating childhood neoplasm for which there is not yet an efficient treatment. Chemokines and their receptors have been involved in tumour growth and metastasis, and in particular the CXCR4/CXCL12 axis has been reported to mediate organ-specific cancer cells homing and invasion. The purpose of the study was to investigate the role of ectopic CXCR4 in the malignant behaviour of NB by studying tumour cell growth, survival, migration, and invasion in vitro and by validating these results using a murine orthotopic model of NB tumour progression in vivo. CXCR4 overexpression in the low metastatic, CXCR4-negative IGR-NB8 cells resulted in CXCL12-mediated chemotaxis in vitro. Furthermore, CXCR4 overexpressing cells were less affected by serum deprivation than mock-transduced cells. In vivo studies revealed that, at sacrifice, volumes of tumours developing in mice with orthotopically implanted NB8-CXCR4-C3 cells, were significantly increased compared to NB8-E6 control tumours. However, no induction of metastases was observed. The in vivo invasive and metastatic cell line IGR-N91 cell line constitutively expresses moderate levels of CXCR4. Overexpression of CXCR4 enhanced in vivo tumour growth but did not increase the occurrence of metastases. IGR-N91 cells where CXCR4 has been knocked-down by stable shRNA grew slower in vitro and in vivo. To identify genes and pathways involved in the CXCR4/CXCL12-mediated effects in NB expression, profiles analyses (Affymetrix) were performed on transduced and control cell lines. Three mock-transduced clones were compared to three CXCR4 overexpressing clones of either cell line IGR-NB8 and IGR-N91. Biostatistical analysis identified 10 commonly upregulated genes (including CXCR4) and 31 downregulated genes common to all CXCR4 overexpressing clones. These observations demonstrate that overexpression of CXCR4 in NB stimulates tumour cell growth, survival, and chemotactic migration but is not sufficient to induce or enhance invasive and metastatic capacities. Activated pathways upon CXCR4 overexpression, identified through global gene expression profiling may be interesting targets for drugs inhibiting tumour growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuroblastoma (NB) is one of the most deadly solid tumors of the young child, for which new efficient and targeted therapies are strongly needed. The CXCR4/CXCR7/CXCL12 chemokine axis has been involved in the progression and organ-specific dissemination of various cancers. In NB, CXCR4 expression was shown to be associated to highly aggressive undifferentiated tumors, while CXCR7 expression was detected in more differentiated and mature neuroblastic tumors. As investigated in vivo, using an orthotopic model of tumor cell implantation of chemokine receptor-overexpressing NB cells (IGR-NB8), the CXCR4/CXCR7/CXCL12 axis was shown to regulate NB primary and secondary growth, although without any apparent influence on organ selective metastasis. In the present study, we addressed the selective role of CXCR4 and CXCR7 receptors in the homing phase of metastatic dissemination using an intravenous model of tumor cell implantation. Tail vein injection into NOD-scid-gamma mice of transduced IGR-NB8 cells overexpressing CXCR4, CXCR7, or both receptors revealed that all transduced cell variants preferentially invaded the adrenal gland and typical NB metastatic target organs, such as the liver and the bone marrow. However, CXCR4 expression favored NB cell dissemination to the liver and the lungs, while CXCR7 was able to strongly promote NB cell homing to the adrenal gland and the liver. Finally, coexpression of CXCR4 and CXCR7 receptors significantly and selectively increased NB dissemination toward the bone marrow. In conclusion, CXCR4 and CXCR7 receptors may be involved in a complex and organ-dependent control of NB growth and selective homing, making these receptors and their inhibitors potential new therapeutic targets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introdução: A disfunção endotelial é importante na patogênese da doença cardiovascular (DCV) relacionada à doença renal crônica (DRC). Stromal cell-derived factor-1 (SDF-1) é uma quimiocina que mobiliza células endoteliais progenitoras (EPC) e em conjunto com a interleucina-8 (IL-8) podem ser usadas como marcadores de reparo e lesão tecidual. Objetivo: Neste trabalho, foi investigado o efeito do meio urêmico na expressão de SDF-1 e IL-8 in vivo e in vitro. Métodos: A inflamação sistêmica foi avaliada por meio da proteína C-reativa (PCR) e interleucina-6 (IL-6). IL-8 e SDF-1 foram avaliados por ELISA como marcadores de disfunção endotelial e reparo tecidual, respectivamente. Os estudos in vitro foram realizados em células endoteliais umbilicais humanas (HUVEC) expostas ao meio urêmico ou saudável. Resultados: Foram incluídos nesse estudo 26 pacientes em hemodiálise (HD) (17 ± 3 meses em diálise, 52 ± 2 anos, 38% homens e 11% diabéticos). As concentrações séricas de PCR, IL-6, SDF-1 e IL-8 foram 4,9 ± 4,8 mg/ml, 6,7 ± 8,1 pg/ml, 2625,9 ± 1288,6 pg/ml e 128,2 ± 206,2 pg/ml, respectivamente. Houve correlação positiva entre PCR e IL-6 (ρ = 0,57; p < 0,005) e entre SDF-1 e IL-8 (ρ = 0,45; p < 0,05). Os resultados in vitro demonstraram que a expressão de SDF-1 pelas HUVEC após 6 horas de tratamento com meio urêmico é menor comparada ao tratamento com meio saudável (p < 0,05). Após 12 horas de tratamento, ocorreu aumento de IL-8 quando as HUVECs foram expostas ao meio urêmico (p < 0,005). Conclusão: Sugerimos que SDF-1 e IL-8 nos pacientes em HD podem ser usados para mensurar a extensão do dano e consequente ativação vascular na uremia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The CXC chemokine receptor 4 (CXCR4) and its ligand, stromal cell-derived factor-1 (SDF-1 alpha or CXC chemokine ligand 12) are involved in the trafficking of leukocytes into and out of extravascular tissues. The purpose of this study was to determine whether SDF-1 alpha secreted by host cells plays a role in recruiting inflammatory cells into the periodontia during local inflammation. Methods: SDF-1 alpha levels were determined by enzyme-linked immunosorbent assay in gingival crevicular fluid (GCF) of 24 individuals with periodontitis versus healthy individuals in tissue biopsies and in a preclinical rat model of Porphyromonas gingivalis lipopolysaccharide-induced experimental bone loss. Neutrophil chemotaxis assays were also used to evaluate whether SDF-1 alpha plays a role in the recruitment of host cells at periodontal lesions. Results: Subjects with periodontal disease had higher levels of SDF-1 alpha in their GCF compared to healthy subjects. Subjects with periodontal disease who underwent mechanical therapy demonstrated decreased levels of SDF-1 alpha. Immunohistologic staining showed that SDF-1 alpha and CXCR4 levels were elevated in samples obtained from periodontally compromised individuals. Similar results were observed in the rodent model. Neutrophil migration was enhanced in the presence of SDF-1 alpha, mimicking immune cell migration in periodontal lesions. Conclusions: SDF-1 alpha may be involved in the immune defense pathway activated during periodontal disease. Upon the development of diseased tissues, SDF-1 alpha levels increase and may recruit host defensive cells into sites of inflammation. These studies suggest that SDF-1 alpha may be a useful biomarker for the identification of periodontal disease progression.