941 resultados para Progressive hemifacial atrophy
Resumo:
O objetivo é relatar o caso de portadora de atrofia hemifacial progressiva, atendida na Faculdade de Medicina de Botucatu-UNESP: A paciente do sexo feminino, 43 anos, branca, queixava-se de afundamento progressivo do olho esquerdo e região orbitária há aproximadamente 10 anos, com dor na região periorbitária ipsilateral e diminuição da acuidade visual. O exame tomográfico confirmou a hipótese e o tratamento foi feito com injeção de Polietigel® na órbita, com bom resultado estético e melhora da função palpebral. O Polietigel pode ser uma alternativa para o tratamento do enoftalmo na síndrome de Parry-Romberg.
Resumo:
Objective. Juvenile localized scleroderma (JLS) includes a number of conditions often grouped together. With the long-term goal of developing uniform classification criteria, we studied the epidemiological, clinical and immunological features of children with JLS followed by paediatric rheumatology and dermatology centres. Methods. A large, multicentre, multinational study was conducted by collecting information on the demographics, family history, triggering environmental factors, clinical and laboratory features, and treatment of patients with JLS. Results. Seven hundred and fifty patients with JLS from 70 centres were enrolled into the study. The disease duration at diagnosis was 18 months. Linear scleroderma (LS) was the most frequent subtype (65%), followed by plaque morphea (PM) (26%), generalized morphea (GM) (7%) and deep morphea (DM) (2%). As many as 15% of patients had a mixed subtype. Ninety-one patients (12%) had a positive family history for rheumatic or autoimmune diseases; 100 (13.3%) reported environmental events as possible trigger. ANA was positive in 42.3% of the patients, with a higher prevalence in the LS-DM subtype than in the PM-GM subtype. Scl70 was detected in the sera of 3% of the patients, anticentromere antibody in 2%, anti-double-stranded DNA in 4%, anti-cardiolipin antibody in 13% and rheumatoid factor in 16%. Methotrexate was the drug most frequently used, especially during the last 5 yr. Conclusion. This study represents the largest collection of patients with JLS ever reported. The insidious onset of the disease, the delay in diagnosis, the recognition of mixed subtype and the better definition of the other subtypes should influence our efforts in educating trainees and practitioners and help in developing a comprehensive classification system for this syndrome. © 2006 Oxford University Press.
Resumo:
Progressive facial hemiatrophy (Romberg's syndrome) is of unknown cause and uncertain pathogenesis. The main pathogenetic hypotheses are: sympathetic system alterations, localized scleroderma, trigeminal changes, possibly of genetic origin. To test the hypothesis of sympathetic system alterations, we designed an experimental model with ablation of the superior cervical sympathetic ganglion in rabbits, cats and dogs. All the animals were operated upon when 30 days old and were examined monthly for 1 year. During this period localized alopecia, corneal ulceration, keratitis, strabismus, enophthalmos, ocular atrophy, hemifacial atrophy and slight bone atrophy on the side of the sympathectomy were observed. Thus, cervical sympathectomy reproduces in animals the principal clinical alterations of Romberg's syndrome. Our data suggest that the sympathetic system is involved in the pathogenesis of this syndrome.
Resumo:
Demonstration of survival and outcome of progressive multifocal leukoencephalopathy (PML) in a 56-year-old patient with common variable immunodeficiency, consisting of severe hypogammaglobulinemia and CD4+ T lymphocytopenia, during continuous treatment with mirtazapine (30 mg/day) and mefloquine (250 mg/week) over 23 months. Regular clinical examinations including Rankin scale and Barthel index, nine-hole peg and box and block tests, Berg balance, 10-m walking tests, and Montreal Cognitive Assessment (MoCA) were done. Laboratory diagnostics included complete blood count and JC virus (JCV) concentration in cerebrospinal fluid (CSF). The noncoding control region (NCCR) of JCV, important for neurotropism and neurovirulence, was sequenced. Repetitive MRI investigated the course of brain lesions. JCV was detected in increasing concentrations (peak 2568 copies/ml CSF), and its NCCR was genetically rearranged. Under treatment, the rearrangement changed toward the archetype sequence, and later JCV DNA became undetectable. Total brain lesion volume decreased (8.54 to 3.97 cm(3)) and atrophy increased. Barthel (60 to 100 to 80 points) and Rankin (4 to 2 to 3) scores, gait stability, and box and block (7, 35, 25 pieces) and nine-hole peg (300, 50, 300 s) test performances first improved but subsequently worsened. Cognition and walking speed remained stable. Despite initial rapid deterioration, the patient survived under continuous treatment with mirtazapine and mefloquine even though he belongs to a PML subgroup that is usually fatal within a few months. This course was paralleled by JCV clones with presumably lower replication capability before JCV became undetectable. Neurological deficits were due to PML lesions and progressive brain atrophy.
Resumo:
Solanum glaucophyllum (Sg) [= S. malacoxylon] is a calcinogenic plant inducing "Enzootic Calcinosis" in cattle. The 1,25-dihydroxyvitamin D3, its main toxic principle, regulates bone and calcium metabolism and also exerts immunomodulatory effects. Thymocyte precursors from bone marrow-derived progenitor cells differentiate into mature T-cells. Differentiation of most T lymphocytes is characterized not only by the variable expression of CD4/CD8 receptor molecules and increased surface density of the T cell antigen receptor, but also by changes in the glycosylation pattern of cell surface glycolipids or glycoproteins. Thymocytes exert a feedback influence on thymic non-lymphoid cells. Sg-induced modifications on cattle thymus T-lymphocytes and on non-lymphoid cells were analysed. Heifers were divided into 5 groups (control, intoxicated with Sg during 15, 30 or 60 days, and probably recovered group). Histochemical, immunohistochemical, lectinhistochemical and morphometric techniques were used to characterize different cell populations of the experimental heifers. Sg-poisoned heifers showed a progressive cortical atrophy that was characterized using the peanut agglutinin (PNA) lectin that recognizes immature thymocytes. These animals also increased the amount of non-lymphoid cells per unit area detected with the Picrosirius technique, WGA and DBA lectins, and pancytokeratin and S-100 antibodies. The thymus atrophy found in intoxicated animals resembled that of the physiological aging process. A reversal effect on these changes was observed after suppression of the intoxication. These findings suggest that Sg-intoxication induces either directly, through the 1,25-dihydroxyvitamin D3 itself, or indirectly through the hypercalcemia, the observed alteration of the thymus.
Resumo:
Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset disorder characterized by ptosis, dysphagia and proximal limb weakness. Autosomal-dominant OPMD is caused by a short (GCG)8–13 expansions within the first exon of the poly(A)-binding protein nuclear 1 gene (PABPN1), leading to an expanded polyalanine tract in the mutated protein. Expanded PABPN1 forms insoluble aggregates in the nuclei of skeletal muscle fibres. In order to gain insight into the different physiological processes affected in OPMD muscles, we have used a transgenic mouse model of OPMD (A17.1) and performed transcriptomic studies combined with a detailed phenotypic characterization of this model at three time points. The transcriptomic analysis revealed a massive gene deregulation in the A17.1 mice, among which we identified a significant deregulation of pathways associated with muscle atrophy. Using a mathematical model for progression, we have identified that one-third of the progressive genes were also associated with muscle atrophy. Functional and histological analysis of the skeletal muscle of this mouse model confirmed a severe and progressive muscular atrophy associated with a reduction in muscle strength. Moreover, muscle atrophy in the A17.1 mice was restricted to fast glycolytic fibres, containing a large number of intranuclear inclusions (INIs). The soleus muscle and, in particular, oxidative fibres were spared, even though they contained INIs albeit to a lesser degree. These results demonstrate a fibre-type specificity of muscle atrophy in this OPMD model. This study improves our understanding of the biological pathways modified in OPMD to identify potential biomarkers and new therapeutic targets.
Resumo:
Demonstration of survival and outcome of progressive multifocal leukoencephalopathy (PML) in a 56-year-old patient with common variable immunodeficiency, consisting of severe hypogammaglobulinemia and CD4+ T lymphocytopenia, during continuous treatment with mirtazapine (30 mg/day) and mefloquine (250 mg/week) over 23 months. Regular clinical examinations including Rankin scale and Barthel index, nine-hole peg and box and block tests, Berg balance, 10-m walking tests, and Montreal Cognitive Assessment (MoCA) were done. Laboratory diagnostics included complete blood count and JC virus (JCV) concentration in cerebrospinal fluid (CSF). The noncoding control region (NCCR) of JCV, important for neurotropism and neurovirulence, was sequenced. Repetitive MRI investigated the course of brain lesions. JCV was detected in increasing concentrations (peak 2568 copies/ml CSF), and its NCCR was genetically rearranged. Under treatment, the rearrangement changed toward the archetype sequence, and later JCV DNA became undetectable. Total brain lesion volume decreased (8.54 to 3.97 cm(3)) and atrophy increased. Barthel (60 to 100 to 80 points) and Rankin (4 to 2 to 3) scores, gait stability, and box and block (7, 35, 25 pieces) and nine-hole peg (300, 50, 300 s) test performances first improved but subsequently worsened. Cognition and walking speed remained stable. Despite initial rapid deterioration, the patient survived under continuous treatment with mirtazapine and mefloquine even though he belongs to a PML subgroup that is usually fatal within a few months. This course was paralleled by JCV clones with presumably lower replication capability before JCV became undetectable. Neurological deficits were due to PML lesions and progressive brain atrophy.
Resumo:
Mutations in the CACNA1A gene, encoding the α1 subunit of the voltage-gated calcium channel Ca(V)2.1 (P/Q-type), have been associated with three neurological phenotypes: familial and sporadic hemiplegic migraine type 1 (FHM1, SHM1), episodic ataxia type 2 (EA2), and spinocerebellar ataxia type 6 (SCA6). We report a child with congenital ataxia, abnormal eye movements and developmental delay who presented severe attacks of hemiplegic migraine triggered by minor head traumas and associated with hemispheric swelling and seizures. Progressive cerebellar atrophy was also observed. Remission of the attacks was obtained with acetazolamide. A de novo 3 bp deletion was found in heterozygosity causing loss of a phenylalanine residue at position 1502, in one of the critical transmembrane domains of the protein contributing to the inner part of the pore. We characterized the electrophysiology of this mutant in a Xenopus oocyte in vitro system and showed that it causes gain of function of the channel. The mutant Ca(V)2.1 activates at lower voltage threshold than the wild type. These findings provide further evidence of this molecular mechanism as causative of FHM1 and expand the phenotypic spectrum of CACNA1A mutations with a child exhibiting severe SHM1 and non-episodic ataxia of congenital onset.
Resumo:
Mutations in the CACNA1A gene, encoding the α1 subunit of the voltage-gated calcium channel CaV2.1 (P/Q-type), have been associated with three neurological phenotypes: familial and sporadic hemiplegic migraine type 1 (FHM1, SHM1), episodic ataxia type 2 (EA2), and spinocerebellar ataxia type 6 (SCA6). We report a child with congenital ataxia, abnormal eye movements and developmental delay who presented severe attacks of hemiplegic migraine triggered by minor head traumas and associated with hemispheric swelling and seizures. Progressive cerebellar atrophy was also observed. Remission of the attacks was obtained with acetazolamide. A de novo 3bp deletion was found in heterozygosity causing loss of a phenylalanine residue at position 1502, in one of the critical transmembrane domains of the protein contributing to the inner part of the pore. We characterized the electrophysiology of this mutant in a Xenopus oocyte in vitro system and showed that it causes gain of function of the channel. The mutant CaV2.1 activates at lower voltage threshold than the wild type. These findings provide further evidence of this molecular mechanism as causative of FHM1 and expand the phenotypic spectrum of CACNA1A mutations with a child exhibiting severe SHM1 and non-episodic ataxia of congenital onset.
Resumo:
Alzheimer`s disease (AD) is characterised neuropathologically by the presence of extracellular amyloid plaques, intraneuronal neurofibrillary tangles, and cerebral neuronal loss. The pathological changes in AD are believed to start even decades before clinical symptoms are detectable. AD gradually affects episodic memory, cognition, behaviour and the ability to perform everyday activities. Mild cognitive impairment (MCI) represents a transitional state between normal aging and dementia disorders, especially AD. The predictive accuracy of the current and commonly used MCI criteria devide this disorder into amnestic (aMCI) and non-amnestic (naMCI) MCI. It seems that many individuals with aMCI tend to convert to AD. However many MCI individuals will remain stable and some may even recover. At present, the principal drugs for the treatment of AD provide only symptomatic and palliative benefits. Safe and effective mechanism-based therapies are needed for this devastating neurodegenerative disease of later life. In conjunction with the development of new therapeutic drugs, tools for early detection of AD would be important. In future one of the challenges will be to detect at an early stage these MCI individuals who will convert to AD. Methods which can predict which MCI subjects will convert to AD will be much more important if the new drug candidates prove to have disease-arresting or even disease–slowing effects. These types of drugs are likely to have the best efficacy if administered in the early or even in the presymptomatic phase of the disease when the synaptic and neuronal loss has not become too widespread. There is no clinical method to determine with certainly which MCI individuals will progress to AD. However there are several methods which have been suggested as predictors of conversion to AD, e.g. increased [11C] PIB uptake, hippocampal atrophy in MRI, low CSF A beta 42 level, high CSF tau-protein level, apolipoprotein E (APOE) ε4 allele and impairment in episodic memory and executive functions. In the present study subjects with MCI appear to have significantly higher [11C] PIB uptake vs healthy elderly in several brain areas including frontal cortex, the posterior cingulate, the parietal and lateral temporal cortices, putamen and caudate. Also results from this PET study indicate that over time, MCI subjects who display increased [11C] PIB uptake appear to be significantly more likely to convert to AD than MCI subjects with negative [11C] PIB retention. Also hippocampal atrophy seems to increase in MCI individuals clearly during the conversion to AD. In this study [11C] PIB uptake increases early and changes relatively little during the AD process whereas there is progressive hippocampal atrophy during the disease. In addition to increased [11C] PIB retention and hippocampal atrophy, the status of APOE ε4 allele might contribute to the conversion from MCI to AD.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Several disease predispositions of Irish Wolfhounds are mentioned in the veterinary literature, but these lists vary greatly between different publications. This article reviews findings on lifespan as well as disease predispositions that have been reported in the literature. Hereditary mechanisms found so far are discussed, including their implications for breeding healthier dogs, the ethical necessity of which is stressed under the aspect of animal welfare. An open health registry, combined with the estimation of breeding values, seems to be the most promising approach. Furthermore, routine male castration is discouraged as being associated with an increased osteosarcoma risk. Mean lifespan estimates in Irish Wolfhounds vary between 4.95 and 8.75 years, but bias due to right censored data is common. The diseases reported to occur most frequently are dilated cardiomyopathy, osteogenic sarcoma, gastric dilation and volvulus and diseases of the osteochondrosis spectrum. Furthermore, intrahepatic portosystemic shunt plays an important role. Several other diseases have been reported in the literature, including rhinitis, epilepsy, progressive retinal atrophy, von Willebrand's Disease, and juvenile fibrocartilaginous embolism.
Resumo:
Streptozotocin (STZ), a glucose analogue known to induce diabetes in experimental animals, causes DNA strand breaks and subsequent activation of poly(ADPribose) polymerase (Parp). Because Parp uses NAD as a substrate, extensive DNA damage will result in reduction of cellular NAD level. In fact, STZ induces NAD depletion and cell death in isolated pancreatic islets in vitro. Activation of Parp therefore is thought to play an important role in STZ-induced diabetes. In the present study, we established Parp-deficient (Parp−/−) mice by disrupting Parp exon 1 by using the homologous recombination technique. These mice were used to examine the possible involvement of Parp in STZ-induced β-cell damage in vivo. The wild-type (Parp+/+) mice showed significant increases in blood glucose concentration from 129 mg/dl to 218, 370, 477, and 452 mg/dl on experimental days 1, 7, 21, and 60, respectively, after a single injection of 180 mg STZ/kg body weight. In contrast, the concentration of blood glucose in Parp−/− mice remained normal up to day 7, slightly increased on day 21, but returned to normal levels on day 60. STZ injection caused extensive necrosis in the islets of Parp+/+ mice on day 1, with subsequent progressive islet atrophy and loss of functional β cells from day 7. In contrast, the extent of islet β-cell death and dysfunction was markedly less in Parp−/− mice. Our findings clearly implicate Parp activation in islet β-cell damage and glucose intolerance induced by STZ in vivo.
Resumo:
Dysgraphia (agraphia) is a common feature of posterior cortical atrophy (PCA). However, detailed analyses of these spelling and writing impairments are infrequently conducted. LM is a 59-year-old woman with dysgraphia associated with PCA. She presented with a two-year history of decline in her writing and dressmaking skills. A 3D T-1-weighted MRI scan confirmed selective bi-parietal atrophy, with relative sparing of the hippocampi and other cortical regions. Analyses of LM's preserved and impaired spelling abilities indicated mild physical letter distortions and a significant spelling deficit characterised by letter substitutions, insertions, omissions, and transpositions that was systematically sensitive to word length while insensitive to real word versus nonword category, word frequency, regularity, imagery, grammatical class and ambiguity. Our findings suggest a primary graphemic buffer disorder underlies LM's spelling errors, possibly originating from disruption to the operation of a fronto-parietal network implicated in verbal working memory.
Resumo:
Spastic paraplegia, optic atrophy, and neuropathy (SPOAN) is an autosomal recessive complicated form of hereditary spastic paraplegia, which is clinically defined by congenital optic atrophy, infancy-onset progressive spastic paraplegia and peripheral neuropathy. In this study, which included 61 individuals (age 5-72 years, 42 females) affected by SPOAN, a comprehensive motor and functional evaluation was performed, using modified Barthel index, modified Ashworth scale, hand grip strength measured with a hydraulic dynamometer and two hereditary spastic paraplegia scales. Modified Barthel index, which evaluate several functional aspects, was more sensitive to disclose disease progression than the spastic paraplegia scales. Spasticity showed a bimodal distribution, with both grades 1 (minimum) and 4 (maximum). Hand grip strength showed a moderate inverse correlation with age. Combination of early onset spastic paraplegia and progressive polyneuropathy make SPOAN disability overwhelming.