38 resultados para Procrustes
Resumo:
L'algorisme de McLachlan per a l'alineament de dos conjunts de coordenades atòmiques és interpretat sota l'òptica de l'Anàlisi Multivariant, que posa de manifest que el plantejament d'aquest problema és equivalent al de l'anàlisi de Procrustes i que la solució proposada per Kabsch és anàloga a la de Sibson, desenvolupada independentment
Resumo:
L'algorisme de McLachlan per a l'alineament de dos conjunts de coordenades atòmiques és interpretat sota l'òptica de l'Anàlisi Multivariant, que posa de manifest que el plantejament d'aquest problema és equivalent al de l'anàlisi de Procrustes i que la solució proposada per Kabsch és anàloga a la de Sibson, desenvolupada independentment
Resumo:
El establecimiento de relaciones entre taxones es un paso esencial en el proceso de catalogación y evaluación del material conservado en un Banco de Germoplasma. Existen distintos métodos de evaluación en función del tipo de caracteres estudiados. Cuando el registro de caracteres se repite en el tiempo y en distintos ambientes, se debe separar la variabilidad intrínsecamente genética entre los taxones de aquella que se debe al ambiente, y más aún, de la posible variabilidad debida a la interacción genotipo*ambiente para el posterior establecimiento de relaciones puramente filogenéticas. En el presente trabajo se estudia comparativamente la factibilidad de aplicación de dos estrategias de análisis estadístico para dar solución a este problema. La primera corresponde al análisis tradicional donde se realiza un Análisis de Componentes Principales sobre los caracteres promedios a lo largo de los diferentes ambientes; y la segunda son métodos más complejos en los cuales cada dato es originado por tres modos: individuos, variables y condiciones ambientales, tales como el Análisis Factorial Múltiple y el Análisis de Procrustes Generalizado. Si bien las configuraciones resultantes fueron todas equivalentes, los métodos de tres vías permiten la interpretación de la interacción genotipo*ambiente.
Resumo:
The effects of wing shape, wing size, and fluctuating asymmetry in these measures oil the field fitness of T. nr. brassicae and T. pretiosum were investigated. Trichogramma wasps mass-reared on eggs of the factitious host Sitotroga cerealella were released in tomato paddocks and those females ovipositing on Helicoverpo spp. eggs were recaptured. Comparisons of the recaptured group with a sample from the release population were used to assess fitness. Wing data were obtained by positioning landmarks on mounted forewings. Size was then measured as the centroid size computed from landmark distances, while Procrustes analysis followed by principal component analysis was used to assess wing shape. Similar findings were obtained for both Trichogramma species: fitness of wasps was strongly related to wing size and some shape dimensions, but not to the asymmetries of these measures. Wasps which performed well in the field had larger wings and a different wing shape compared to wasps from the mass reared population. Both size and the shape dimensions were linearly associated with fitness although there was also some evidence for non-linear selection on shape. The results suggest that wing shape and wing size are reliable predictors of field fitness for these Trichogramma wasps.
Resumo:
In this paper, we apply multidimensional scaling (MDS) and parametric similarity indices (PSI) in the analysis of complex systems (CS). Each CS is viewed as a dynamical system, exhibiting an output time-series to be interpreted as a manifestation of its behavior. We start by adopting a sliding window to sample the original data into several consecutive time periods. Second, we define a given PSI for tracking pieces of data. We then compare the windows for different values of the parameter, and we generate the corresponding MDS maps of ‘points’. Third, we use Procrustes analysis to linearly transform the MDS charts for maximum superposition and to build a global MDS map of “shapes”. This final plot captures the time evolution of the phenomena and is sensitive to the PSI adopted. The generalized correlation, the Minkowski distance and four entropy-based indices are tested. The proposed approach is applied to the Dow Jones Industrial Average stock market index and the Europe Brent Spot Price FOB time-series.
Resumo:
13th International Conference on Autonomous Robot Systems (Robotica), 2013, Lisboa
Resumo:
The use of substitute groups in biomonitoring programs has been proposed to minimize the high financial costs and time for samples processing. The objectives of this study were to evaluate the correlation between (i) the spatial distribution among the major zooplankton groups (cladocerans, copepods, rotifers, and testaceans protozoa), (ii) the data of density and presence/absence of species, and (iii) the data of species, genera, and families from samples collected in the Lago Grande do Curuai, Pará, Brazil. A total of 55 sample of the zooplanktonic community was collected, with 28 samples obtained in March and 27 in September, 2013. The agreement between the different sets of data was assessed using Mantel and Procrustes tests. Our results indicated high correlations between genus level and species level and high correlations between presence/absence of species and abundance, regardless of the seasonal period. These results suggest that zooplankton community could be incorporated in a long-term monitoring program at relatively low financial and time costs.
Resumo:
Most studies about the higher-order dimensions to be considered in order to parsimoniously describe Personality Disorders (PDs) have identified between two and four factors but there is still no consensus about their exact number. In this context, the cultural stability of these structures might be a criterion to be considered. The aim of this study was to identify stable higher-order structures of PD traits in a French-speaking African and Swiss sample (N = 2,711). All subject completed the IPDE screening questionnaire. Using Everett's criterion and conducting a series of principal component analyses, a cross-culturally stable two- and four-factor structure were identified, associated with a total congruence coefficient of respectively .98 and .94 after Procrustes rotation. Moreover, these two structures were also highly replicable across the four African regions considered, North Africa, West Africa, Central Africa, and Mauritius, with a mean total congruence coefficient of respectively .97 and .87. The four-factor structure presented the advantage of being similar to Livesely's four components and of describing the ten PDs more accurately.
Resumo:
One of the first useful products from the human genome will be a set of predicted genes. Besides its intrinsic scientific interest, the accuracy and completeness of this data set is of considerable importance for human health and medicine. Though progress has been made on computational gene identification in terms of both methods and accuracy evaluation measures, most of the sequence sets in which the programs are tested are short genomic sequences, and there is concern that these accuracy measures may not extrapolate well to larger, more challenging data sets. Given the absence of experimentally verified large genomic data sets, we constructed a semiartificial test set comprising a number of short single-gene genomic sequences with randomly generated intergenic regions. This test set, which should still present an easier problem than real human genomic sequence, mimics the approximately 200kb long BACs being sequenced. In our experiments with these longer genomic sequences, the accuracy of GENSCAN, one of the most accurate ab initio gene prediction programs, dropped significantly, although its sensitivity remained high. Conversely, the accuracy of similarity-based programs, such as GENEWISE, PROCRUSTES, and BLASTX was not affected significantly by the presence of random intergenic sequence, but depended on the strength of the similarity to the protein homolog. As expected, the accuracy dropped if the models were built using more distant homologs, and we were able to quantitatively estimate this decline. However, the specificities of these techniques are still rather good even when the similarity is weak, which is a desirable characteristic for driving expensive follow-up experiments. Our experiments suggest that though gene prediction will improve with every new protein that is discovered and through improvements in the current set of tools, we still have a long way to go before we can decipher the precise exonic structure of every gene in the human genome using purely computational methodology.
Resumo:
Closely related species may be very difficult to distinguish morphologically, yet sometimes morphology is the only reasonable possibility for taxonomic classification. Here we present learning-vector-quantization artificial neural networks as a powerful tool to classify specimens on the basis of geometric morphometric shape measurements. As an example, we trained a neural network to distinguish between field and root voles from Procrustes transformed landmark coordinates on the dorsal side of the skull, which is so similar in these two species that the human eye cannot make this distinction. Properly trained neural networks misclassified only 3% of specimens. Therefore, we conclude that the capacity of learning vector quantization neural networks to analyse spatial coordinates is a powerful tool among the range of pattern recognition procedures that is available to employ the information content of geometric morphometrics.
Resumo:
ABSTRACT The population dynamics of a species tends to change from the core to the periphery of its distribution. Therefore, one could expect peripheral populations to be subject to a higher level of stress than more central populations (the center–periphery hypothesis) and consequently should present a higher level of fluctuating asymmetry. To test these predictions we study asymmetry in wing shape of five populations of Drosophila antonietae collected throughout the distribution of the species using fluctuating asymmetry as a proxy for developmental instability. More specifically, we addressed the following questions: (1) what types of asymmetry occur in populations of D. antonietae? (2) Does the level of fluctuating asymmetry vary among populations? (3) Does peripheral populations have a higher fluctuating asymmetry level than central populations? We used 12 anatomical landmarks to quantify patterns of asymmetry in wing shape in five populations of D. antonietae within the framework of geometric morphometrics. Net asymmetry – a composite measure of directional asymmetry + fluctuating asymmetry – varied significantly among populations. However, once net asymmetry of each population is decomposed into directional asymmetry and fluctuating asymmetry, most of the variation in asymmetry was explained by directional asymmetry alone, suggesting that populations of D. antonietae have the same magnitude of fluctuating asymmetry throughout the geographical distribution of the species. We hypothesize that larval development in rotting cladodes might play an important role in explaining our results. In addition, our study underscores the importance of understanding the interplay between the biology of a species and its geographical patterns of asymmetry.
Resumo:
Aim. To predict the fate of alpine interactions involving specialized species, using a monophagous beetle and its host-plant as a case study. Location. The Alps. Methods. We investigated genetic structuring of the herbivorous beetle Oreina gloriosa and its specific host-plant Peucedanum ostruthium. We used genome fingerprinting (in the insect and the plant) and sequence data (in the insect) to compare the distribution of the main gene pools in the two associated species and to estimate divergence time in the insect, a proxy for the temporal origin of the interaction. We quantified the similarity in spatial genetic structures by performing a Procrustes analysis, a tool from the shape theory. Finally, we simulated recolonization of an empty space analogous to the deglaciated Alps just after ice retreat by two lineages from two species showing unbalanced dependence, to examine how timing of the recolonization process, as well as dispersal capacities of associated species, could explain the observed pattern. Results. Contrasting with expectations based on their asymmetrical dependence, patterns in the beetle and plant were congruent at a large scale. Exceptions occurred at a regional scale in areas of admixture, matching known suture zones in Alpine plants. Simulations using a lattice-based model suggested these empirical patterns arose during or soon after recolonization, long after the estimated origin of the interaction c. 0.5 million years ago. Main conclusions. Species-specific interactions are scarce in alpine habitats because glacial cycles have limited opportunities for coevolution. Their fate, however, remains uncertain under climate change. Here we show that whereas most dispersal routes are paralleled at large scale, regional incongruence implies that the destinies of the species might differ under changing climate. This may be a consequence of the host-dependence of the beetle that locally limits the establishment of dispersing insects.