978 resultados para Pressure uniformity
Resumo:
The different combination possibilities of emission uniformity and field slope within the operational unities of localized irrigation systems favor the occurence of some configurations in the irrigation system, and consequently different hydraulic head distributions, discharge and system management. After the system has been implanted, it is necessary to verify pressure and discharge distribution in the operational unit. This work objective was to verify pressure and discharge uniformity on derivation line and lateral lines with micro sprinkle in data gotten from operational research. The results allow to check that despite analyzed declivity; the higher the emission uniformity calculated for the line of derivation in the project is, the higher its pressure uniformity is. Previously the results of discharge in the emitters of the operational unit showed a constant variation entering the point of higher discharge and lower discharge, even though differently from the three tested irrigation blades.
Resumo:
The purpose of this study was to evaluate the uniformity of distribution coefficient (UDC) and coefficient of variation (CV) of a familiar set of irrigation, classifying it the ASAE standard. The irrigation and fertigation are determined by two methods the KELLER & KARMELI and DENÍCULI . The two experiments were subjected to varying pressures: 12, 14, 16 and 18 kPa, in a completely randomized design of twenty samples composed of flows with three replications. Urea, potassium chloride (KCl) and ammonium phosphate (MAP) were the elements used for fertigation. The system consisted of a 200 L tank, which supplied another container of 30 L, it was moved vertically to control the pressure. The data was statistically compared between treatments for each methodology. In fertigation the best pressure was 16 kPa and was classified as "excellent" for UDC (91.03%) and "marginal" for C.V. (7.47%). For the irrigation treatment, the best pressure was 16 kPa rated "excellent" for UDC (91.2%) and "marginal" for C.V. (7.68%). The DENÍCULI et al. (1980) methodology proved more reliable for the evaluation of drip systems. It was observed that this set has good uniformity of distribution, but with great variability in flows.
Resumo:
ABSTRACT Microsprinkler non-pressure compensating nozzles usually show water flow variation along the lateral line. This study aimed at adapting microtubes into non-compensating system of microsprinklers previous installed in the field, as a self-compensated nozzle, to improve the flow uniformity along the lateral line. Microtubes were adapted to three types of commercial microsprinklers. Tests were conducted, both in the laboratory and in field, to evaluate the microsprinkler performance at four different flows (40, 50, 60 and 70 L h-1) under pressure head range from 75 to 245 kPa. Nozzles presented coefficient of flow-rate variation (CVq) lower than 5.5% and distribution uniformity (DU) greater than 95%, which are classified as excellent. The original spatial water distribution of the microsprinkler did not change by using microtube as a nozzle. This device adapted to non-pressure compensating microsprinklers are functional and operate effectively with flows ranging up to 70 L h-1. Small variations at microsprinkler flows along the lateral line can occur, however, at random manner, which is common for pressure-compensating nozzles. Therefore, the microtube technique is able to control pressure variation in microsprinklers.
Resumo:
Consumers increasingly demand convenience foods of the highest quality in terms of natural flavor and taste, and which are freedom additives and preservatives. This demand has triggered the need for the development of a number of nonthermal approaches to food processing, of which high-pressure technology has proven to be very valuable. A number of recent publications have demonstrated novel and diverse uses of this technology. Its novel features, which include destruction of microorganisms at room temperature or lower, have made the technology commerically attractive. Enzymes forming bacteria can be by the application of pressure-thermal combinations. This review aims to identify the opportunities and challenges associated with this technology. In addition to discussing the effects of high pressure on food components, this review covers the combined effects of high pressure processing with: gamma irradiation, alternating current, ultrasound, and carbon dioxide or anti-microbial treatment. Further, the applications of this technology in various sectors-fruits and vegetables, dairy and meat processing-have been dealt with extensively. The integration of high-pressure with other matured processing operations such as blanching, dehydration, osmotic dehydration, rehyrdration, frying, freezing/thawing and solid-liquid extraction has been shown to open up new processing options. The key challenges identified include: heat transfer problems and resulting non-uniformity in processing, obtaining reliable and reproducible data, for process validation, lack of detailed knowledge about the interaction between high pressure, and a number of food constituents, packaging and statutory issues.
Resumo:
A theoretical model was developed in order to determine the optimal moment for substituting the sprayer and pressure regulator kit on a center pivot irrigation machine. The model is based on the hypothesis that pressure regulator and sprayer deterioration decrease irrigation uniformity. To compensate the deficit that happens at under irrigated areas, an increase on irrigation depth is required. The model considers: additional water consumption and energy costs, maintenance and labor costs, as well as yield losses associated with under or over irrigated areas. The sum of all these components is compared to buying and installing a new spray kit cost, allowing the farmer to decide the best moment to renovate the sprayer and pressure regulator kits on a center pivot irrigation machine based on economic criteria.
Resumo:
A theoretical model developed by the authors for determining the optimal moment to substitute sprayer and pressure regulator kit on a center pivot irrigating potatoes and beans has been applied. The methodology compares the sum of the costs due to additional consumption of water and energy, maintenance and labor, as well as yield losses associated to areas with deficit or over irrigation to the costs due to buy and install a new sprinkling set on the pivot. The results showed that for a reduction of 3.07% of the Hermann and Hein’s Uniformity Coefficient (UCh), the substitution of the sprinkling module on the pivot is justified when potatoes and beans are cultivated.
Resumo:
The deformation of a ring under axial compression is analyzed in order to estimate a favorable ring specimen geometry capable of limiting the influence of friction on the stress-strain curve obtained from SHPB tests. The analysis shows that the use of a ring specimen with a large inner diameter and a small radial thickness offers some advantages comparing with the traditional disk sample. In particular, it can improve the reliability of the test results for ductile materials in the presence of friction. Based on the deformation analysis of a ductile ring under compression, a correction coefficient is proposed to relate the actual material stress strain curve with the reading from the SHPB. It is shown using finite element simulation that the proposed correction can be used for a wide range of conventional ductile materials. Experimental results with steel alloys indicate that the correction procedure is an effective technique for an accurate measurement of the dynamic material strength response. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
High pressure die casting is the most important production method for casting magnesium alloy components, and uniformity of appearance is an important criterion for acceptance of a component by customers. This paper investigates the influence of uniformity in surface appearance of diecast AZ91D plates on their corrosion behaviour. Through immersion, hydrogen collection and weight loss measurements it was found that corrosion is more likely to occur on the areas of the plate that appear to be darker, leading to a non-uniformly corroded surface. Microstructural analysis showed that the non-uniformity in appearance is related to a difference in the morphology and distribution of porosity across the surface of a diecast AZ91D plate. The darker areas of the surface are high in porosity which breaks the continuity of the beta-phase network and provides shortcut paths for corrosion from the surface to the interior of the casting. The brighter shiny areas of the surface are much less porous, with isolated pores being confined by corrosion resistant beta-precipitates thus reducing the corrosion rate.
Resumo:
The use of atmospheric pressure plasmas for thin film deposition on thermo-sensitive materials is currently one of the main challenges of the plasma scientific community. Despite the growing interest in this field, the existing knowledge gap between gas-phase reaction mechanisms and thin film properties is still one of the most important barriers to overcome for a complete understanding of the process. In this work, thin films surface characterization techniques, combined with passive and active gas-phase diagnostic methods, were used to provide a comprehensive study of the Ar/TEOS deposition process assisted by an atmospheric pressure plasma jet. SiO2-based thin films exhibiting a well-defined chemistry, a good morphological structure and high uniformity were studied in detail by FTIR, XPS, AFM and SEM analysis. Furthermore, non-intrusive spectroscopy techniques (OES, filter imaging) and laser spectroscopic methods (Rayleigh scattering, LIF and TALIF) were employed to shed light on the complexity of gas-phase mechanisms involved in the deposition process and discuss the influence of TEOS admixture on gas temperature, electron density and spatial-temporal behaviours of active species. The poly-diagnostic approach proposed in this work opens interesting perspectives both in terms of process control and optimization of thin film performances.
Resumo:
Assessment of central blood pressure (BP) has grown substantially over recent years because evidence has shown that central BP is more relevant to cardiovascular outcomes than peripheral BP. Thus, different classes of antihypertensive drugs have different effects on central BP despite similar reductions in brachial BP. The aim of this study was to investigate the effect of nebivolol, a β-blocker with vasodilator properties, on the biochemical and hemodynamic parameters of hypertensive patients. Experimental single cohort study conducted in the outpatient clinic of a university hospital. Twenty-six patients were recruited. All of them underwent biochemical and hemodynamic evaluation (BP, heart rate (HR), central BP and augmentation index) before and after 3 months of using nebivolol. 88.5% of the patients were male; their mean age was 49.7 ± 9.3 years and most of them were overweight (29.6 ± 3.1 kg/m2) with large abdominal waist (102.1 ± 7.2 cm). There were significant decreases in peripheral systolic BP (P = 0.0020), diastolic BP (P = 0.0049), HR (P < 0.0001) and central BP (129.9 ± 12.3 versus 122.3 ± 10.3 mmHg; P = 0.0083) after treatment, in comparison with the baseline values. There was no statistical difference in the augmentation index or in the biochemical parameters, from before to after the treatment. Nebivolol use seems to be associated with significant reduction of central BP in stage I hypertensive patients, in addition to reductions in brachial systolic and diastolic BP.
Resumo:
High pressure homogenization (HPH) is a non-thermal method, which has been employed to change the activity and stability of biotechnologically relevant enzymes. This work investigated how HPH affects the structural and functional characteristics of a glucose oxidase (GO) from Aspergillus niger. The enzyme was homogenized at 75 and 150 MPa and the effects were evaluated with respect to the enzyme activity, stability, kinetic parameters and molecular structure. The enzyme showed a pH-dependent response to the HPH treatment, with reduction or maintenance of activity at pH 4.5-6.0 and a remarkable activity increase (30-300%) at pH 6.5 in all tested temperatures (15, 50 and 75°C). The enzyme thermal tolerance was reduced due to HPH treatment and the storage for 24 h at high temperatures (50 and 75°C) also caused a reduction of activity. Interestingly, at lower temperatures (15°C) the activity levels were slightly higher than that observed for native enzyme or at least maintained. These effects of HPH treatment on function and stability of GO were further investigated by spectroscopic methods. Both fluorescence and circular dichroism revealed conformational changes in the molecular structure of the enzyme that might be associated with the distinct functional and stability behavior of GO.
Resumo:
Taurine is a sulfur-containing amino acid that exerts protective effects on vascular function and structure in several models of cardiovascular diseases through its antioxidant and anti-inflammatory properties. Early protein malnutrition reprograms the cardiovascular system and is linked to hypertension in adulthood. This study assessed the effects of taurine supplementation in vascular alterations induced by protein restriction in post-weaning rats. Weaned male Wistar rats were fed normal- (12%, NP) or low-protein (6%, LP) diets for 90 days. Half of the NP and LP rats concomitantly received 2.5% taurine supplementation in the drinking water (NPT and LPT, respectively). LP rats showed elevated systolic, diastolic and mean arterial blood pressure versus NP rats; taurine supplementation partially prevented this increase. There was a reduced relaxation response to acetylcholine in isolated thoracic aortic rings from the LP group that was reversed by superoxide dismutase (SOD) or apocynin incubation. Protein expression of p47phox NADPH oxidase subunit was enhanced, whereas extracellular (EC)-SOD and endothelial nitric oxide synthase phosphorylation at Ser 1177 (p-eNOS) were reduced in aortas from LP rats. Furthermore, ROS production was enhanced while acetylcholine-induced NO release was reduced in aortas from the LP group. Taurine supplementation improved the relaxation response to acetylcholine and eNOS-derived NO production, increased EC-SOD and p-eNOS protein expression, as well as reduced ROS generation and p47phox expression in the aortas from LPT rats. LP rats showed an increased aortic wall/lumen ratio and taurine prevented this remodeling through a reduction in wall media thickness. Our data indicate a protective role of taurine supplementation on the high blood pressure, endothelial dysfunction and vascular remodeling induced by post-weaning protein restriction. The beneficial vascular effect of taurine was associated with restoration of vascular redox homeostasis and improvement of NO bioavailability.
Resumo:
Up to 20% of women with hypertensive pregnancy disorders might persist with chronic hypertension. This study compared clinical and echocardiographic features between women whose hypertension began as hypertensive pregnancy disorders (PH group) and women whose diagnosis of hypertension did not occur during pregnancy (NPH group). Fifty PH and 100 NPH women were cross-sectionally evaluated by clinical, laboratory, and echocardiography analysis, and the groups were matched by duration of hypertension. PH exhibited lower age (46.6 ± 1.4 vs. 65.3 ± 1.1 years; P < .001), but higher systolic (159.8 ± 3.9 vs. 148.0 ± 2.5 mm Hg; P = .009) and diastolic (97.1 ± 2.4 vs. 80.9 ± 1.3 mm Hg; P < .001) blood pressure than NPH, although used more antihypertensive classes (3.4 ± 0.2 vs. 2.6 ± 0.1; P < .001). Furthermore, PH showed higher left ventricular wall thickness and increased prevalence of concentric hypertrophy than NPH after adjusting for age and blood pressure. In conclusion, this study showed that PH may exhibit worse blood pressure control and adverse left ventricular remodeling compared with NPH.
Resumo:
We report a combined study of external pressure and Cu-substitution on BaFe2As2 single crystals grown by the in-flux technique. At ambient pressure, the Cu-substitution is known to suppress the spin density wave (SDW) phase in pure BaFe2As2(TSDW ≈ 140 K) and to induce a superconducting (SC) dome with a maximum transition temperature [Formula: see text]. This [Formula: see text] is much lower than the Tc ∼ 15-28 K achieved in the case of Ru, Ni and Co substitutions. Such a lower Tc is attributed to a Cu(2+) magnetic pair-breaking effect. The latter is strongly suppressed by applied pressure, as shown herein, Tc can be significantly enhanced by applying high pressures. In this work, we investigated the pressure effects on Cu(2+) magnetic pair-breaking in the BaFe2-xCuxAs2 series. Around the optimal concentration (xopd = 0.11), all samples showed a substantial increase of Tc as a function of pressure. Yet for those samples with a slightly higher doping level (over-doped regime), Tc presented a dome-like shape with maximum Tc ≃ 8 K. Remarkably interesting, the under-doped samples, e.g. x = 0.02 display a maximum pressure induced Tc ≃ 30 K which is comparable to the maximum Tc's found for the pure compound under external pressures. Furthermore, the magnetoresistance effect as a function of pressure in the normal state of the x = 0.02 sample also presented an evolution consistent with the screening of the Cu(2+) local moments. These findings demonstrate that the Cu(2+) magnetic pair-breaking effect is completely suppressed by applying pressure in the low concentration regime of Cu(2+) substituted BaFe2As2.
Resumo:
CONTEXT: Intestinal constipation - a common symptom among the general population - is more frequent in women. It may be secondary to an improper diet or organic or functional disturbances, such as dyskinesia of the pelvic floor. This is basically characterized by the absence of relaxation or paradoxical contraction of the pelvic floor and anal sphincter during evacuation. OBJECTIVE: To analyze, by manometric data, the anal pressure variation at rest, during evacuation effort by using the Valsalva maneuver and forced post-expiratory apnea in subjects with secondary constipation. METHODS: Twenty-one patients (19 females - 90.4%) with a mean age of 47.5 years old (23-72) were studied. The diagnosis was performed using anorectal manometry, with a catheter containing eight channels disposed at the axial axis, measuring the proximal (1) and distal (2) portions of the anal orifice. The elevation of the pressure values in relation to the resting with the evacuation effort was present in all patients. The Agachan score was used for clinical evaluation of constipation. The variables studied were: mean anal pressure of the anal orifice for 20 seconds at rest, the effort of evacuation using Valsalva maneuver and the effort of evacuation during apnea after forced expiration, as well as the area under the curve of the manometric tracing at moments Valsalva and apnea. RESULTS: The analysis of the mean values of the anal pressure variation at rest evidenced difference between proximal and distal channels (P = 0.007), independent of the moment and tendency to differ during moments Valsalva and apnea (P = 0.06). The mean of values of the area under the manometric tracing curve showed differences between moments Valsalva and apnea (P = 0.0008), either at the proximal portion or at the distal portion of the anal orifice. CONCLUSION: The effort of evacuation associated with postexpiratory apnea, when compared with the effort associated with the Valsalva maneuver, provides lower elevation of anal pressure at rest by the parameter area under the curve.