977 resultados para Power Flow Tracing
Resumo:
This paper proposes a transmission and wheeling pricing method based on the monetary flow tracing along power flow paths: the monetary flow-monetary path method. Active and reactive power flows are converted into monetary flows by using nodal prices. The method introduces a uniform measurement for transmission service usages by active and reactive powers. Because monetary flows are related to the nodal prices, the impacts of generators and loads on operation constraints and the interactive impacts between active and reactive powers can be considered. Total transmission service cost is separated into more practical line-related costs and system-wide cost, and can be flexibly distributed between generators and loads. The method is able to reconcile transmission service cost fairly and to optimize transmission system operation and development. The case study on the IEEE 30 bus test system shows that the proposed pricing method is effective in creating economic signals towards the efficient use and operation of the transmission system. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The conventional Newton and fast decoupled power flow (FDPF) methods have been considered inadequate to obtain the maximum loading point of power systems due to ill-conditioning problems at and near this critical point. It is well known that the PV and Q-theta decoupling assumptions of the fast decoupled power flow formulation no longer hold in the vicinity of the critical point. Moreover, the Jacobian matrix of the Newton method becomes singular at this point. However, the maximum loading point can be efficiently computed through parameterization techniques of continuation methods. In this paper it is shown that by using either theta or V as a parameter, the new fast decoupled power flow versions (XB and BX) become adequate for the computation of the maximum loading point only with a few small modifications. The possible use of reactive power injection in a selected PV bus (Q(PV)) as continuation parameter (mu) for the computation of the maximum loading point is also shown. A trivial secant predictor, the modified zero-order polynomial which uses the current solution and a fixed increment in the parameter (V, theta, or mu) as an estimate for the next solution, is used in predictor step. These new versions are compared to each other with the purpose of pointing out their features, as well as the influence of reactive power and transformer tap limits. The results obtained with the new approach for the IEEE test systems (14, 30, 57 and 118 buses) are presented and discussed in the companion paper. The results show that the characteristics of the conventional method are enhanced and the region of convergence around the singular solution is enlarged. In addition, it is shown that parameters can be switched during the tracing process in order to efficiently determine all the PV curve points with few iterations. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The parameterized fast decoupled power flow (PFDPF), versions XB and BX, using either theta or V as a parameter have been proposed by the authors in Part I of this paper. The use of reactive power injection of a selected PVbus (Q(PV)) as the continuation parameter for the computation of the maximum loading point (MLP) was also investigated. In this paper, the proposed versions obtained only with small modifications of the conventional one are used for the computation of the MLP of IEEE test systems (14, 30, 57 and 118 buses). These new versions are compared to each other with the purpose of pointing out their features, as well as the influence of reactive power and transformer tap limits. The results obtained with the new approaches are presented and discussed. The results show that the characteristics of the conventional FDPF method are enhanced and the region of convergence around the singular solution is enlarged. In addition, it is shown that these versions can be switched during the tracing process in order to efficiently determine all the PV curve points with few iterations. A trivial secant predictor, the modified zero-order polynomial, which uses the current solution and a fixed increment in the parameter (V, theta, or mu) as an estimate for the next solution, is used for the predictor step. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Continuation methods have been long used in P-V curve tracing due to their efficiency in the resolution of ill-conditioned cases, with close to singular Jacobian matrices, such as the maximum loading point of power systems. Several parameterization techniques have been proposed to avoid matrix singularity and successfully solve those cases. This paper presents a simple geometric parameterization technique to overcome the singularity of the Jacobian matrix by the addition of a line equations located at the plane determined by a bus voltage magnitude and the loading factor. This technique enlarges the set of voltage variables that can be used to whole P-V curve tracing, without ill-conditioning problems and no need of parameter changes. Simulation results, obtained for large realistic Brazilian and American power systems, show that the robustness and efficiency of the conventional power flow are not only preserved but also improved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
New parameterization schemes have been proposed by the authors in Part I of this paper. In this part these new options for the parameterization of power flow equations are tested, namely, the total power losses (real and reactive), the power at the slack bus (real or reactive), the reactive power at generation buses, and the transmission line power losses (real and reactive). These different parameterization schemes can be used to obtain the maximum loading point without ill-conditioning problems, once the singularity of Jacobian matrix is avoided. The results obtained with the new approach for the IEEE test systems (14, 30, 57, and 118 buses) show that the characteristics of the conventional method are not only preserved but also improved. In addition, it is shown that the proposed method and the conventional one can be switched during the tracing of PV curves to determine, with few iterations, all points of the PV curve. Several tests were also carried out to compare the performance of the proposed parameterization schemes for the continuation power flow method with the use of both the secant and tangent predictors.
Resumo:
Continuation methods have been shown as efficient tools for solving ill-conditioned cases, with close to singular Jacobian matrices, such as the maximum loading point of power systems. Some parameterization techniques have been proposed to avoid matrix singularity and successfully solve those cases. This paper presents a new geometric parameterization scheme that allows the complete tracing of the P-V curves without ill-conditioning problems. The proposed technique associates robustness to simplicity and, it is of easy understanding. The Jacobian matrix singularity is avoided by the addition of a line equation, which passes through a point in the plane determined by the total real power losses and loading factor. These two parameters have clear physical meaning. The application of this new technique to the IEEE systems (14, 30, 57, 118 and 300 buses) shows that the best characteristics of the conventional Newton's method are not only preserved but also improved. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
This paper presents efficient geometric parameterization techniques using the tangent and the trivial predictors for the continuation power flow, developed from observation of the trajectories of the load flow solution. The parameterization technique eliminates the Jacobian matrix singularity of load flow, and therefore all the consequent problems of ill-conditioning, by the addition of the line equations which pass through the points in the plane determined by the variables loading factor and the real power generated by the slack bus, two parameters with clear physical meaning. This paper also provides an automatic step size control around the maximum loading point. Thus, the resulting method enables not only the calculation of the maximum loading point, but also the complete tracing of P-V curves of electric power systems. The technique combines robustness with ease of understanding. The results to the IEEE 300-bus system and of large real systems show the effectiveness of the proposed method. © 2012 IEEE.
Resumo:
This paper presents a new approach to the transmission loss allocation problem in a deregulated system. This approach belongs to the set of incremental methods. It treats all the constraints of the network, i.e. control, state and functional constraints. The approach is based on the perturbation of optimum theorem. From a given optimal operating point obtained by the optimal power flow the loads are perturbed and a new optimal operating point that satisfies the constraints is determined by the sensibility analysis. This solution is used to obtain the allocation coefficients of the losses for the generators and loads of the network. Numerical results show the proposed approach in comparison to other methods obtained with well-known transmission networks, IEEE 14-bus. Other test emphasizes the importance of considering the operational constraints of the network. And finally the approach is applied to an actual Brazilian equivalent network composed of 787 buses, and it is compared with the technique used nowadays by the Brazilian Control Center. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents the Direct Power Control of Three-Phase Matrix Converters (DPC-MC) operating as Unified Power Flow Controllers (UPFC). Since matrix converters allow direct AC/AC power conversion without intermediate energy storage link, the resulting UPFC has reduced volume and cost, together with higher reliability. Theoretical principles of DPC-MC method are established based on an UPFC model, together with a new direct power control approach based on sliding mode control techniques. As a result, active and reactive power can be directly controlled by selection of an appropriate switching state of matrix converter. This new direct power control approach associated to matrix converters technology guarantees decoupled active and reactive power control, zero error tracking, fast response times and timely control actions. Simulation results show good performance of the proposed system.
Resumo:
This paper presents a direct power control (DPC) for three-phase matrix converters operating as unified power flow controllers (UPFCs). Matrix converters (MCs) allow the direct ac/ac power conversion without dc energy storage links; therefore, the MC-based UPFC (MC-UPFC) has reduced volume and cost, reduced capacitor power losses, together with higher reliability. Theoretical principles of direct power control (DPC) based on sliding mode control techniques are established for an MC-UPFC dynamic model including the input filter. As a result, line active and reactive power, together with ac supply reactive power, can be directly controlled by selecting an appropriate matrix converter switching state guaranteeing good steady-state and dynamic responses. Experimental results of DPC controllers for MC-UPFC show decoupled active and reactive power control, zero steady-state tracking error, and fast response times. Compared to an MC-UPFC using active and reactive power linear controllers based on a modified Venturini high-frequency PWM modulator, the experimental results of the advanced DPC-MC guarantee faster responses without overshoot and no steady-state error, presenting no cross-coupling in dynamic and steady-state responses.
Resumo:
The optimal power flow problem has been widely studied in order to improve power systems operation and planning. For real power systems, the problem is formulated as a non-linear and as a large combinatorial problem. The first approaches used to solve this problem were based on mathematical methods which required huge computational efforts. Lately, artificial intelligence techniques, such as metaheuristics based on biological processes, were adopted. Metaheuristics require lower computational resources, which is a clear advantage for addressing the problem in large power systems. This paper proposes a methodology to solve optimal power flow on economic dispatch context using a Simulated Annealing algorithm inspired on the cooling temperature process seen in metallurgy. The main contribution of the proposed method is the specific neighborhood generation according to the optimal power flow problem characteristics. The proposed methodology has been tested with IEEE 6 bus and 30 bus networks. The obtained results are compared with other wellknown methodologies presented in the literature, showing the effectiveness of the proposed method.
Resumo:
To maintain a power system within operation limits, a level ahead planning it is necessary to apply competitive techniques to solve the optimal power flow (OPF). OPF is a non-linear and a large combinatorial problem. The Ant Colony Search (ACS) optimization algorithm is inspired by the organized natural movement of real ants and has been successfully applied to different large combinatorial optimization problems. This paper presents an implementation of Ant Colony optimization to solve the OPF in an economic dispatch context. The proposed methodology has been developed to be used for maintenance and repairing planning with 48 to 24 hours antecipation. The main advantage of this method is its low execution time that allows the use of OPF when a large set of scenarios has to be analyzed. The paper includes a case study using the IEEE 30 bus network. The results are compared with other well-known methodologies presented in the literature.
Resumo:
This paper presents a new predictive digital control method applied to Matrix Converters (MC) operating as Unified Power Flow Controllers (UPFC). This control method, based on the inverse dynamics model equations of the MC operating as UPFC, just needs to compute the optimal control vector once in each control cycle, in contrast to direct dynamics predictive methods that needs 27 vector calculations. The theoretical principles of the inverse dynamics power flow predictive control of the MC based UPFC with input filter are established. The proposed inverse dynamics predictive power control method is tested using Matlab/Simulink Power Systems toolbox and the obtained results show that the designed power controllers guarantees decoupled active and reactive power control, zero error tracking, fast response times and an overall good dynamic and steady-state response.