916 resultados para Planejamento experimental


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synthetic inorganic pigments are the most widely used in ceramic applications because they have excellent chemical and thermal stability and also, in general, a lower toxicity to man and to the environment. In the present work, the ceramic black pigment CoFe2O4 was synthesized by the polymerization Complex method (MPC) in order to form a material with good chemical homogeneity. Aiming to optimize the process of getting the pigment through the MPC was used a fractional factorial design 2(5-2), with resolution III. The factors studied in mathematical models were: citric acid concentration, the pyrolysis time, temperature, time and rate of calcination. The response surfaces using the software statistica 7.0. The powders were characterized by thermal analysis (TG/DSC), x-ray diffraction (XRD), scanning electron microscopy (SEM) and spectroscopy in the UV-visible. Based on the results, there was the formation of phase cobalt ferrite (CoFe2O4) with spinel structure. The color of the pigments obtained showed dark shades, from black to gray. The model chosen was appropriate since proved to be adjusted and predictive. Planning also showed that all factors were significant, with a confidence level of 95%

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work had as objective to apply an experimental planning aiming at to improve the efficiency of separation of a new type of mixer-settler applied to treat waste water contaminated with oil. An unity in scale of laboratory, was installed in the Post-graduation Program of Chemical Engineering of UFRN. It was constructed in partnership with Petrobras S.A. This called device Misturador-Decantador a Inversão de Fases (MDIF) , possess features of conventional mixer-settler and spray column type. The equipment is composed of three main parts: mixing chamber; chamber of decantation and chamber of separation. The efficiency of separation is evaluated analyzing the oil concentrations in water in the feed and the output of the device. For the analysis one used the gravimetric method of oil and greases analysis (TOG). The system in study is a water of formation emulsified with oil. The used extractant is a mixture of Turpentine spirit hydro-carbons, supplied for Petrobras. It was applied, for otimization of the efficiency of separation of the equipment, an experimental planning of the composite central type, having as factorial portion fractionary factorial planning 2 5-2, with the magnifying of the type star and five replications in the central point. In this work, the following independents variables were studied: contents of oil in the feed of the device; volumetric ratio (O/A); total flowrate ; agitation in the mixing chamber and height of the organic bed. Minimum and maximum limits for the studied variables had been fixed according previous works. The analysis of variance for the equation of the empirical model, revealed statistically significant and useful results for predictions ends. The variance analysis also presented the distribution of the error as a normal distribution and was observed that as the dispersions do not depend on the levels of the factors, the independence assumption can be verified. The variation around the average is explained by 98.98%, or either, equal to the maximum value, being the smoothing of the model in relation to the experimental points of 0,98981. The results present a strong interaction between the variable oil contents in the feed and agitation in the mixing chamber, having great and positive influence in the separation efficiency. Another variable that presented a great positive influence was the height of the organic bed. The best results of separation efficiency had been obtained for high flowrates when associates the high oil concentrations and high agitation. The results of the present work had shown excellent agreement with the results carried out through previous works with the mixer-settler of phase inversion

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Steam injection is an oil recovery method accomplished by introducing steam directly into the oil well to the reservoir. The steam causes dilation of the casing, which, after reduction in temperature, tends to return to the initial dimensions: causing the formation of cracks in the cement and loss of hydraulic isolation.. In this context, the type of the SBR latex is used to improve the flexibility of the cement matrix by reducing the amount of fatigue failure. To prevent these failures, the mechanical resistance parameters should be carefully adjusted to well conditions. This work aims to study the mechanical behavior of cement slurry systems additivated with SBR latex for cementing oil wells subject to steam injection. Through the central composite factorial design was studied the behavior of the compressive strength by varying the density of the paste between 1.75 g /cm³ (14.6 lb/ Gal) and 1.89 g/cm³ (15,8lb / Gal), curing time between 4 days and 28 days and concentration of SBR Latex between 0 L / m³ and 534.722 L / m³ (0 gpc and 4 gpc). The results showed that increasing the concentration of SBR latex, within the given ranges, there was a decreased compression resistance and elastic modulus by increasing the elastic deformability of the slurry. From the results it can determine best slurries formulation conditions in oil well cementing operations subject to steam injection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Steam injection is an oil recovery method accomplished by introducing steam directly into the oil well to the reservoir. The steam causes dilation of the casing, which, after reduction in temperature, tends to return to the initial dimensions: causing the formation of cracks in the cement and loss of hydraulic isolation.. In this context, the type of the SBR latex is used to improve the flexibility of the cement matrix by reducing the amount of fatigue failure. To prevent these failures, the mechanical resistance parameters should be carefully adjusted to well conditions. This work aims to study the mechanical behavior of cement slurry systems additivated with SBR latex for cementing oil wells subject to steam injection. Through the central composite factorial design was studied the behavior of the compressive strength by varying the density of the paste between 1.75 g /cm³ (14.6 lb/ Gal) and 1.89 g/cm³ (15,8lb / Gal), curing time between 4 days and 28 days and concentration of SBR Latex between 0 L / m³ and 534.722 L / m³ (0 gpc and 4 gpc). The results showed that increasing the concentration of SBR latex, within the given ranges, there was a decreased compression resistance and elastic modulus by increasing the elastic deformability of the slurry. From the results it can determine best slurries formulation conditions in oil well cementing operations subject to steam injection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synthetic inorganic pigments are the most widely used in ceramic applications because they have excellent chemical and thermal stability and also, in general, a lower toxicity to man and to the environment. In the present work, the ceramic black pigment CoFe2O4 was synthesized by the polymerization Complex method (MPC) in order to form a material with good chemical homogeneity. Aiming to optimize the process of getting the pigment through the MPC was used a fractional factorial design 2(5-2), with resolution III. The factors studied in mathematical models were: citric acid concentration, the pyrolysis time, temperature, time and rate of calcination. The response surfaces using the software statistica 7.0. The powders were characterized by thermal analysis (TG/DSC), x-ray diffraction (XRD), scanning electron microscopy (SEM) and spectroscopy in the UV-visible. Based on the results, there was the formation of phase cobalt ferrite (CoFe2O4) with spinel structure. The color of the pigments obtained showed dark shades, from black to gray. The model chosen was appropriate since proved to be adjusted and predictive. Planning also showed that all factors were significant, with a confidence level of 95%

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work aims to determine a better methodology to help predicting some operational parameters to a new design of mixer-settler on treating wastewater produced by petroleum industry, called MDIF (Misturador-Decantador à Inversão de Fases/ Mixer-Settler based on Phase Inversion MSPI). The data from this research were obtained from the wastewater treatment unit, called MSPI-TU, installed on a wastewater treatment plant (WTP) of PETROBRAS/UO-RNCE. The importance in determining the better methodology to predict the results of separation and extraction efficiency of the equipment, contributes significantly to determine the optimum operating variables for the control of the unit. The study was based on a comparison among the experimental efficiency (E) obtained by operating MSPI-TU, the efficiency obtained by experimental design equation (Eplan) from the software Statistica Experimental Design® (version 7.0), and the other obtained from a modeling equation based on a dimensional analysis (Ecalc). The results shows that the experimental design equation gives a good prediction of the unit efficiencies with better data reliability, regarding to the condition before a run operation. The average deviation between the proposed by statistic planning model equation and experimental data was 0.13%. On the other hand, the efficiency calculated by the equation which represents the dimensional analysis, may result on important relative deviations (up 70%). Thus, the experimental design is confirmed as a reliable tool, with regard the experimental data processing of the MSPI-TU

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Rio Grande do Norte State stands out as one great producer of structural clay of the brazilian northeastern. The Valley Assu ceramic tiles production stands out obtained from ilitics ball clays that abound in the region under study. Ceramics formulation and the design of experiments with mixture approach, has been applied for researchers, come as an important aid to decrease the number of experiments necessary to the optimization. In this context, the objective of this work is to evaluate the effects of the formulation, temperature and heating rate in the physical-mechanical properties of the red ceramic body used for roofing tile fabrication of the Valley Assu, using design of mixture experiments. Four clays samples used in two ceramics industry of the region were use as raw material and characterized by X-ray diffraction, chemical composition, differential thermal analysis (DTA), thermogravimetric analysis (TGA), particle size distribution analysis and plasticity techniques. Afterwards, they were defined initial molded bodies and made specimens were then prepared by uniaxial pressing at 25 MPa before firing at 850, 950 and 1050 ºC in a laboratory furnace, with heating rate in the proportions of 5, 10 e 15 ºC/min. The following tecnologicals properties were evaluated: linear firing shrinkage, water absorption and flexural strength. Results show that the temperature 1050 ºC and heating rate of 5 ºC/min was the best condition, therefore presented significance in all physical-mechanical properties. The model was accepted as valid based of the production of three new formulations with fractions mass diferents of the initial molded bodies and heated with temperature at 1050 ºC and heating rate of 5 ºC/min. Considering the formulation, temperature and heating rate as variables of the equations, another model was suggested, where from the aplication of design of experiments with mixtures was possible to get a best formulation, whose experimental error is the minor in relation to the too much formulations

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In recent decades, the generation of solid and liquid waste has increased substantially due to increased industrial activity that is directly linked to economic growth. For that is the most efficient process, it is inevitable generation of such wastes. In the oil industry, a major waste generated in oil exploration is produced water, which due to its complex composition and the large amount generated, has become a challenge, given the restrictions imposed by environmental laws regarding their disposal, making if necessary create alternatives for reuse or treatment in order to reduce the content of contaminants and reduce the harmful effects to the environment. This water can be present in free form or emulsified with the oil, when in the form of an emulsion of oil-water type, it is necessary to use chemicals to promote the separation and flotation is the treatment method which has proved to be more efficient, for it can remove much of the emulsified oil when compared to other methods. In this context, the object of this work was to study the individual effects and interactions of some physicochemical parameters of operations, based on previous work to a flotation cell used in the separation of synthetic emulsion oil / water in order to optimize the efficiency of the separation process through of the 24 full factorial design with center point. The response variables to evaluate the separation efficiency was the percentage of color and turbidity removal. The independent variables were: concentration of de-emulsifying, oil content in water, salinity and pH, these being fixed, minimum and maximum limits. The analysis of variance for the equation of the empirical model, was statistically significant and useful for predictive purposes the separation efficiency of the floater with R2 > 90%. The results showed that the oil content in water and the interaction between the oil content in water and salinity, showed the highest values of the estimated effects among all the factors investigated, having great and positive influence on the separation efficiency. By analyzing the response surface was determined maximum removal efficiency above 90% for both measured for turbidity as a measure of color when in a saline medium (30 g/L), the high oil concentrations (306 ppm) using low concentrations of de-emulsifying (1,1 ppm) and at pH close to neutral

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Green bean is considered as one of most traditional Brazilian Northeast dishes. Green beans drying preliminary experiments show that combine processes, fixed-bed/spouted bed, resulted in dehydrated beans with uniform humidity and the recovery of the beans properties after their rehydration. From this assays was defined an initial humidity suited for the spouted bed process. A fixed-bed pre-drying process until a level of 40% humidity gave the best results. The spouted bed characteristic hydrodynamic curves were presented for different beans loads, where changes in the respective beans physical properties were evidenced during the fluidynamic assay, due simultaneous drying process. One 22 factorial experimental design was carried out with three repetition in the central point, considering as entry variables: drying air velocity and temperature. The response variables were the beans brakeage, water fraction evaporated during 20 and 50 minutes of drying and the humidity ratio. They are presented still the modeling of the drying of the green beans in fine layer in the drier of tray and the modeling of the shrinking of the beans of the drying processes fixed-bed and spouted bed

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pós-graduação em Engenharia de Produção - FEB