977 resultados para Particulate Matter Distribution
Resumo:
The particulate matter distribution (PM) trends that exist in catalyzed particulate filters (CPFs) after loading, passive oxidation, active regeneration, and post loading conditions are not clearly understood. These data are required to optimize the operation of CPFs, prevent damage to the CPFs caused by non-uniform distributions, and develop accurate CPF models. To develop an understanding of PM distribution trends, multiple tests were conducted and the PM distribution was measured in three dimensions using a terahertz wave scanner. The results of this work indicate that loading, passive oxidation, active regeneration, and post loading can all cause non-uniform PM distributions. The density of the PM in the substrate after loading and the amount of PM that is oxidized during passive oxidations and active regenerations affect the uniformity of the distribution. Post loading that occurs after active regenerations result in distributions that are less uniform than post loading that occurs after passive oxidations.
Resumo:
This work investigated the personal exposure to indoor particulate matters using the intake fraction metric and provided a possible way to trace the particle inhaled from an indoor particle source. A turbulence model validated by the particle measurements in a room with underfloor air distribution (UFAD) system was used to predict the indoor particle concentrations. Inhalation intake fraction of indoor particles was defined and evaluated in two rooms equipped with the UFAD, i.e., the experimental room and a small office. According to the exposure characteristics and a typical respiratory rate, the intake fraction was determined in two rooms with a continuous and episodic (human cough) source of particles, respectively. The findings showed that the well-mixing assumption of indoor air failed to give an accurate estimation of inhalation exposure and the average concentration at return outlet or within the overall room could not relate well the intake fraction to the amount of particle emitted from an indoor source.
Resumo:
Data on concentrations and distribution of particulate matter in the Caspian Sea obtained during surveys in 1981-1983 with use of modified filtering units have shown that over the major part of the sea concentration of particulate matter does dot exceed 1-2 mg/l. Only in the northern Caspian and in coastal regions concentrations correspond to values measured earlier. Total amount of particulate matter in the Caspian Sea is about of 90 million ton, 19.6% in the Northern Caspian, 28.1% in the Middle Caspian, and 52.3% in the Southern Caspian. Contents of carbon in particulate matter of the Central Caspian reach 30-40%, and over a significant part of the sea - 20%. A correlation has been found between areas of increased carbon contents in particulate matter and in bottom sediments. An important role of biofiltration in enrichment of particulates in organic matter has been noted. From data on carbon contents and an estimate of particulate matter input biogenic portion in particulate matter exceeds 50% for the whole sea.
Resumo:
The relationship between mesoscale hydrodynamics and the distribution of large particulate matter (LPM, particles larger than 200 ?m) in the first 1000 m of the Western Mediterranean basin was studied with a microprocessor-driven CTD-video package, the Underwater Video Profiler (UVP). Observations made during the last decade showed that, in late spring and summer, LPM concentration was high in the coastal part of the Western Mediterranean basin at the shelf break and near the continental slope (computed maximum: 149 ?g C/l between 0 and 100 m near the Spanish coast of the Gibraltar Strait). LPM concentration decreased further offshore into the central Mediterranean Sea where, below 100 m, it remained uniformly low, ranging from 2 to 4 ?g C/l. However, a strong variability was observed in the different mesoscale structures such as the Almeria-Oran jet in the Alboran Sea or the Algerian eddies. LPM concentration was up to one order of magnitude higher in fronts and eddies than in the adjacent oligotrophic Mediterranean waters (i.e. 35 vs. 8 ?g C/l in the Alboran Sea or 16 vs. 3 ?g C/l in a small shear cyclonic eddy). Our observations suggest that LPM spatial heterogeneity generated by the upper layer mesoscale hydrodynamics extends into deeper layers. Consequently, the superficial mesoscale dynamics may significantly contribute to the biogeochemical cycling between the upper and meso-pelagic layers.
Resumo:
Results of multiyear investigation of distribution and composition of suspended matter in waters off the northwest coast of Africa are presented. Large-scale circulation, upwelling, river runoff, and aeolian deposition affect distribution and evolution of biochemical composition of particulate matter. Concentrations of organic carbon, nitrogen, chlorophyll, phytoplankton and trace metals in the particulate matter are determined. Ratios of these components exhibit seasonal variations.
Resumo:
Particulate matter research is essential because of the well known significant adverse effects of aerosol particles on human health and the environment. In particular, identification of the origin or sources of particulate matter emissions is of paramount importance in assisting efforts to control and reduce air pollution in the atmosphere. This thesis aims to: identify the sources of particulate matter; compare pollution conditions at urban, rural and roadside receptor sites; combine information about the sources with meteorological conditions at the sites to locate the emission sources; compare sources based on particle size or mass; and ultimately, provide the basis for control and reduction in particulate matter concentrations in the atmosphere. To achieve these objectives, data was obtained from assorted local and international receptor sites over long sampling periods. The samples were analysed using Ion Beam Analysis and Scanning Mobility Particle Sizer methods to measure the particle mass with chemical composition and the particle size distribution, respectively. Advanced data analysis techniques were employed to derive information from large, complex data sets. Multi-Criteria Decision Making (MCDM), a ranking method, drew on data variability to examine the overall trends, and provided the rank ordering of the sites and years that sampling was conducted. Coupled with the receptor model Positive Matrix Factorisation (PMF), the pollution emission sources were identified and meaningful information pertinent to the prioritisation of control and reduction strategies was obtained. This thesis is presented in the thesis by publication format. It includes four refereed papers which together demonstrate a novel combination of data analysis techniques that enabled particulate matter sources to be identified and sampling site/year ranked. The strength of this source identification process was corroborated when the analysis procedure was expanded to encompass multiple receptor sites. Initially applied to identify the contributing sources at roadside and suburban sites in Brisbane, the technique was subsequently applied to three receptor sites (roadside, urban and rural) located in Hong Kong. The comparable results from these international and national sites over several sampling periods indicated similarities in source contributions between receptor site-types, irrespective of global location and suggested the need to apply these methods to air pollution investigations worldwide. Furthermore, an investigation into particle size distribution data was conducted to deduce the sources of aerosol emissions based on particle size and elemental composition. Considering the adverse effects on human health caused by small-sized particles, knowledge of particle size distribution and their elemental composition provides a different perspective on the pollution problem. This thesis clearly illustrates that the application of an innovative combination of advanced data interpretation methods to identify particulate matter sources and rank sampling sites/years provides the basis for the prioritisation of future air pollution control measures. Moreover, this study contributes significantly to knowledge based on chemical composition of airborne particulate matter in Brisbane, Australia and on the identity and plausible locations of the contributing sources. Such novel source apportionment and ranking procedures are ultimately applicable to environmental investigations worldwide.
Resumo:
Despite the existence of air quality guidelines in Australia and New Zealand, the concentrations of particulate matter have exceeded these guidelines on several occasions. To identify the sources of particulate matter, examine the contributions of the sources to the air quality at specific areas and estimate the most likely locations of the sources, a growing number of source apportionment studies have been conducted. This paper provides an overview of the locations of the studies, salient features of the results obtained and offers some perspectives for the improvement of future receptor modelling of air quality in these countries. The review revealed that because of its advantages over alternative models, Positive Matrix Factorisation (PMF) was the most commonly applied model in the studies. Although there were differences in the sources identified in the studies, some general trends were observed. While biomass burning was a common problem in both countries, the characteristics of this source varied from one location to another. In New Zealand, domestic heating was the highest contributor to particle levels on days when the guidelines were exceeded. On the other hand, forest back-burning was a concern in Brisbane while marine aerosol was a major source in most studies. Secondary sulphate, traffic emissions, industrial emissions and re-suspended soil were also identified as important sources. Some unique species, for example, volatile organic compounds and particle size distribution were incorporated into some of the studies with results that have significant ramifications for the improvement of air quality. Overall, the application of source apportionment models provided useful information that can assist the design of epidemiological studies and refine air pollution reduction strategies in Australia and New Zealand.
Resumo:
Recent epidemiological studies have shown a consistent association of the mass concentration of urban air thoracic (PM10) and fine (PM2.5) particles with mortality and morbidity among cardiorespiratory patients. However, the chemical characteristics of different particulate size ranges and the biological mechanisms responsible for these adverse health effects are not well known. The principal aims of this thesis were to validate a high volume cascade impactor (HVCI) for the collection of particulate matter for physicochemical and toxicological studies, and to make an in-depth chemical and source characterisation of samples collected during different pollution situations. The particulate samples were collected with the HVCI, virtual impactors and a Berner low pressure impactor in six European cities: Helsinki, Duisburg, Prague, Amsterdam, Barcelona and Athens. The samples were analysed for particle mass, common ions, total and water-soluble elements as well as elemental and organic carbon. Laboratory calibration and field comparisons indicated that the HVCI can provide a unique large capacity, high efficiency sampling of size-segregated aerosol particles. The cutoff sizes of the recommended HVCI configuration were 2.4, 0.9 and 0.2 μm. The HVCI mass concentrations were in a good agreement with the reference methods, but the chemical composition of especially the fine particulate samples showed some differences. This implies that the chemical characterization of the exposure variable in toxicological studies needs to be done from the same HVCI samples as used in cell and animal studies. The data from parallel, low volume reference samplers provide valuable additional information for chemical mass closure and source assessment. The major components of PM2.5 in the virtual impactor samples were carbonaceous compounds, secondary inorganic ions and sea salt, whereas those of coarse particles (PM2.5-10) were soil-derived compounds, carbonaceous compounds, sea salt and nitrate. The major and minor components together accounted for 77-106% and 77-96% of the gravimetrically-measured masses of fine and coarse particles, respectively. Relatively large differences between sampling campaigns were observed in the organic carbon content of the PM2.5 samples as well as the mineral composition of the PM2.5-10 samples. A source assessment based on chemical tracers suggested clear differences in the dominant sources (e.g. traffic, residential heating with solid fuels, metal industry plants, regional or long-range transport) between the sampling campaigns. In summary, the field campaigns exhibited different profiles with regard to particulate sources, size distribution and chemical composition, thus, providing a highly useful setup for toxicological studies on the size-segregated HVCI samples.
Resumo:
Measurements of particulate matter (PM) from spark ignition (SI) engine exhaust using dilution tunnels will become more prevalent as emission standards are tightened. Hence, a study of the dilution process was undertaken in order to understand how various dilution related parameters affect the accuracy with which PM sizes and concentrations can be determined. A SI and a compression ignition (CI) engine were separately used to examine parameters of the dilution process; the present work discusses the results in the context of SI exhaust dilution. A Scanning Mobility Particle Sizer (SMPS) was used to measure the size distribution, number density, and volume fraction of PM. Temperature measurements in the exhaust pipe and dilution tunnel reveal the degree of mixing between exhaust and dilution air, the effect of flowrate on heat transfer from undiluted and diluted exhaust to the environment, and the minimum permissible dilution ratio for a maximum sample temperature of 52°C. Measurements of PM concentrations as a function of dilution ratio show the competing effects of temperature and particle/vapor concentrations on particle growth dynamics, which result in a range of dilution ratios-from 13 to 18-where the effect of dilution ratio, independent of flowrate, is kept to a minimum. This range of dilution ratios is therefore optimal in order to achieve repeatable PM concentration measurements. Particle dynamics during transit through the tunnel operating at the optimal dilution ratio was found statistically insignificant compared to data scatter. Such small differences in number concentration may be qualitatively representative of particle losses for SI exhaust, but small increases in PM volume fraction during transit through the tunnel may significantly underestimate accretion of mass due to unburned hydrocarbons (HCs) emitted by SI engines. The fraction of SI-derived PM mass due to adsorbed/absorbed vapor, estimated from these data, is consistent with previous chemical analyses of PM. © 1998 Society of Automotive Engineers, Inc.
Resumo:
A joint oceanographic cruise between the Institute of Oceanography, Chinese Academy of Science and the Department of Oceanography, Seoul National University was carried out in the Yellow Sea during the summer of 1996 to investigate the concentration and particle-size distribution of suspended particulate matter (SPM). The general trends in the surface and bottom waters show that SPM concentrations and particle sizes decreased seawards in both the western (Chinese) and eastern (Korean) coastal regions of the Yellow Sea. In the bottom waters, SPM concentrations were higher and particle sizes were larger along the eastern coast than along the western coast. We suggest this is due to the resuspension of bottom sediments by strong onshore summer typhoons in the southwestern coastal waters of Korea.
Resumo:
Suspended particulate matter (SPM) measurements obtained along a cross-section in the central English Channel (Wight-Cotentin transect) indicate that the area may be differentiated into: (1) an English coastal zone, associated with the highest concentrations; (2) a French coastal zone, with intermediate concentrations; and (3) the offshore waters of the Channel, characterised by a very low suspended-sediment load. The SPM particle-size distribution was modal close to the English coast (main mode 10-12 mu m); the remainder of the area was characterised by flat SPM distributions. Examination of the diatom communities in the SPM suggest:; that material resuspended in the intertidal zone and the estuarine environments was advected towards the offshore waters of the English Channel. Considerable variations in SPM concentrations occurred during a tidal cycle: maximum concentrations were sometimes up to 3 times higher than the minimum concentrations, Empirical orthogonal function (EOF) analysis of the SPM concentration time series indicates that, although the bottom waters were more turbid than the surficial waters, this was not likely to be the result of in situ sediment resuspension. Instead, the observed variations appear to be controlled mainly by advective mechanisms. The limited resuspension was probably caused by: (1) the limited availability of fine-grained material within the bottom sediments, and (2) 'bed-armouring' processes which protect the finer-grained fractions of the seabed material from erosion and entrainment within the overlying flow during the less energetic stages of the tide.
Resumo:
Certain environmental conditions in animal and plant production have been associated with increased frequency in respiratory illnesses, including asthma, chronic bronchitis, and hypersensitivity pneumonitis, in farmers occupationally exposed in swine production. The aim of this study was to characterize particulate matter (PM) contamination in seven Portuguese swine farms and determine the existence of clinical symptoms associated with asthma and other allergy diseases, utilizing the European Community Respiratory Health Survey questionnaire. Environmental assessments were performed with portable direct-reading equipment, and PM contamination including five different sizes (PM0.5, PM1.0, PM2.5, PM5.0, PM10) was determined. The distribution of particle size showed the same trend in all swine farms, with high concentrations of particles with PM5 and PM10. Results from the questionnaire indicated a trend such that subjects with diagnosis of asthma were exposed to higher concentrations of PM with larger size (PM2.5, PM5, and PM10) while subjects with sneezing, runny nose, or stuffy nose without a cold or flu were exposed to higher concentrations of PM with smaller size (PM0.5 and PM1). Data indicate that inhalation of PM in swine farm workers is associated with increased frequency of respiratory illnesses.
Resumo:
In the metropolitan area of Sao Paulo, Brazil, ozone and particulate matter ( PM) are the air pollutants that pose the greatest threat to air quality, since the PM and the ozone precursors ( nitrogen oxides and volatile organic compounds) are the main source of air pollution from vehicular emissions. Vehicular emissions can be measured inside road tunnels, and those measurements can provide information about emission factors of in-use vehicles. Emission factors are used to estimate vehicular emissions and are described as the amount of species emitted per vehicle distance driven or per volume of fuel consumed. This study presents emission factor data for fine particles, coarse particles, inhalable particulate matter and black carbon, as well as size distribution data for inhalable particulate matter, as measured in March and May of 2004, respectively, in the Janio Quadros and Maria Maluf road tunnels, both located in Sao Paulo. The Janio Quadros tunnel carries mainly light-duty vehicles, whereas the Maria Maluf tunnel carries light-duty and heavy-duty vehicles. In the Janio Quadros tunnel, the estimated light-duty vehicle emission factors for the trace elements copper and bromine were 261 and 220 mu g km(-1), respectively, and 16, 197, 127 and 92 mg km(-1), respectively, for black carbon, inhalable particulate matter, coarse particles and fine particles. The mean contribution of heavy-duty vehicles to the emissions of black carbon, inhalable particulate matter, coarse particles and fine particles was, respectively 29, 4, 6 and 6 times higher than that of light-duty vehicles. The inhalable particulate matter emission factor for heavy-duty vehicles was 1.2 times higher than that found during dynamometer testing. In general, the particle emissions in Sao Paulo tunnels are higher than those found in other cities of the world.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)