765 resultados para Parallel computing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single processor architectures are unable to provide the required performance of high performance embedded systems. Parallel processing based on general-purpose processors can achieve these performances with a considerable increase of required resources. However, in many cases, simplified optimized parallel cores can be used instead of general-purpose processors achieving better performance at lower resource utilization. In this paper, we propose a configurable many-core architecture to serve as a co-processor for high-performance embedded computing on Field-Programmable Gate Arrays. The architecture consists of an array of configurable simple cores with support for floating-point operations interconnected with a configurable interconnection network. For each core it is possible to configure the size of the internal memory, the supported operations and number of interfacing ports. The architecture was tested in a ZYNQ-7020 FPGA in the execution of several parallel algorithms. The results show that the proposed many-core architecture achieves better performance than that achieved with a parallel generalpurpose processor and that up to 32 floating-point cores can be implemented in a ZYNQ-7020 SoC FPGA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Breast cancer is the most common cancer among women, being a major public health problem. Worldwide, X-ray mammography is the current gold-standard for medical imaging of breast cancer. However, it has associated some well-known limitations. The false-negative rates, up to 66% in symptomatic women, and the false-positive rates, up to 60%, are a continued source of concern and debate. These drawbacks prompt the development of other imaging techniques for breast cancer detection, in which Digital Breast Tomosynthesis (DBT) is included. DBT is a 3D radiographic technique that reduces the obscuring effect of tissue overlap and appears to address both issues of false-negative and false-positive rates. The 3D images in DBT are only achieved through image reconstruction methods. These methods play an important role in a clinical setting since there is a need to implement a reconstruction process that is both accurate and fast. This dissertation deals with the optimization of iterative algorithms, with parallel computing through an implementation on Graphics Processing Units (GPUs) to make the 3D reconstruction faster using Compute Unified Device Architecture (CUDA). Iterative algorithms have shown to produce the highest quality DBT images, but since they are computationally intensive, their clinical use is currently rejected. These algorithms have the potential to reduce patient dose in DBT scans. A method of integrating CUDA in Interactive Data Language (IDL) is proposed in order to accelerate the DBT image reconstructions. This method has never been attempted before for DBT. In this work the system matrix calculation, the most computationally expensive part of iterative algorithms, is accelerated. A speedup of 1.6 is achieved proving the fact that GPUs can accelerate the IDL implementation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Variations in different types of genomes have been found to be responsible for a large degree of physical diversity such as appearance and susceptibility to disease. Identification of genomic variations is difficult and can be facilitated through computational analysis of DNA sequences. Newly available technologies are able to sequence billions of DNA base pairs relatively quickly. These sequences can be used to identify variations within their specific genome but must be mapped to a reference sequence first. In order to align these sequences to a reference sequence, we require mapping algorithms that make use of approximate string matching and string indexing methods. To date, few mapping algorithms have been tailored to handle the massive amounts of output generated by newly available sequencing technologies. In otrder to handle this large amount of data, we modified the popular mapping software BWA to run in parallel using OpenMPI. Parallel BWA matches the efficiency of multithreaded BWA functions while providing efficient parallelism for BWA functions that do not currently support multithreading. Parallel BWA shows significant wall time speedup in comparison to multithreaded BWA on high-performance computing clusters, and will thus facilitate the analysis of genome sequencing data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work reported in this paper is motivated by the fact that there is a need to apply autonomic computing concepts to parallel computing systems. Advancing on prior work based on intelligent cores [36], a swarm-array computing approach, this paper focuses on ‘Intelligent agents’ another swarm-array computing approach in which the task to be executed on a parallel computing core is considered as a swarm of autonomous agents. A task is carried to a computing core by carrier agents and is seamlessly transferred between cores in the event of a predicted failure, thereby achieving self-ware objectives of autonomic computing. The feasibility of the proposed swarm-array computing approach is validated on a multi-agent simulator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have optimised the atmospheric radiation algorithm of the FAMOUS climate model on several hardware platforms. The optimisation involved translating the Fortran code to C and restructuring the algorithm around the computation of a single air column. Instead of the existing MPI-based domain decomposition, we used a task queue and a thread pool to schedule the computation of individual columns on the available processors. Finally, four air columns are packed together in a single data structure and computed simultaneously using Single Instruction Multiple Data operations. The modified algorithm runs more than 50 times faster on the CELL’s Synergistic Processing Elements than on its main PowerPC processing element. On Intel-compatible processors, the new radiation code runs 4 times faster. On the tested graphics processor, using OpenCL, we find a speed-up of more than 2.5 times as compared to the original code on the main CPU. Because the radiation code takes more than 60% of the total CPU time, FAMOUS executes more than twice as fast. Our version of the algorithm returns bit-wise identical results, which demonstrates the robustness of our approach. We estimate that this project required around two and a half man-years of work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small clusters of gallium oxide, technologically important high temperature ceramic, together with interaction of nucleic acid bases with graphene and small-diameter carbon nanotube are focus of first principles calculations in this work. A high performance parallel computing platform is also developed to perform these calculations at Michigan Tech. First principles calculations are based on density functional theory employing either local density or gradient-corrected approximation together with plane wave and gaussian basis sets. The bulk Ga2O3 is known to be a very good candidate for fabricating electronic devices that operate at high temperatures. To explore the properties of Ga2O3 at nonoscale, we have performed a systematic theoretical study on the small polyatomic gallium oxide clusters. The calculated results find that all lowest energy isomers of GamOn clusters are dominated by the Ga-O bonds over the metal-metal or the oxygen-oxygen bonds. Analysis of atomic charges suggest the clusters to be highly ionic similar to the case of bulk Ga2O3. In the study of sequential oxidation of these slusters starting from Ga2O, it is found that the most stable isomers display up to four different backbones of constituent atoms. Furthermore, the predicted configuration of the ground state of Ga2O is recently confirmed by the experimental result of Neumark's group. Guided by the results of calculations the study of gallium oxide clusters, performance related challenge of computational simulations, of producing high performance computers/platforms, has been addressed. Several engineering aspects were thoroughly studied during the design, development and implementation of the high performance parallel computing platform, rama, at Michigan Tech. In an attempt to stay true to the principles of Beowulf revolutioni, the rama cluster was extensively customized to make it easy to understand, and use - for administrators as well as end-users. Following the results of benchmark calculations and to keep up with the complexity of systems under study, rama has been expanded to a total of sixty four processors. Interest in the non-covalent intereaction of DNA with carbon nanotubes has steadily increased during past several years. This hybrid system, at the junction of the biological regime and the nanomaterials world, possesses features which make it very attractive for a wide range of applicatioins. Using the in-house computational power available, we have studied details of the interaction between nucleic acid bases with graphene sheet as well as high-curvature small-diameter carbon nanotube. The calculated trend in the binding energies strongly suggests that the polarizability of the base molecules determines the interaction strength of the nucleic acid bases with graphene. When comparing the results obtained here for physisorption on the small diameter nanotube considered with those from the study on graphene, it is observed that the interaction strength of nucleic acid bases is smaller for the tube. Thus, these results show that the effect of introducing curvature is to reduce the binding energy. The binding energies for the two extreme cases of negligible curvature (i.e. flat graphene sheet) and of very high curvature (i.e. small diameter nanotube) may be considered as upper and lower bounds. This finding represents an important step towards a better understanding of experimentally observed sequence-dependent interaction of DNA with Carbon nanotubes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En el presente artículo se muestran las ventajas de la programación en paralelo resolviendo numéricamente la ecuación del calor en dos dimensiones a través del método de diferencias finitas explícito centrado en el espacio FTCS. De las conclusiones de este trabajo se pone de manifiesto la importancia de la programación en paralelo para tratar problemas grandes, en los que se requiere un elevado número de cálculos, para los cuales la programación secuencial resulta impracticable por el elevado tiempo de ejecución. En la primera sección se describe brevemente los conceptos básicos de programación en paralelo. Seguidamente se resume el método de diferencias finitas explícito centrado en el espacio FTCS aplicado a la ecuación parabólica del calor. Seguidamente se describe el problema de condiciones de contorno y valores iniciales específico al que se va a aplicar el método de diferencias finitas FTCS, proporcionando pseudocódigos de una implementación secuencial y dos implementaciones en paralelo. Finalmente tras la discusión de los resultados se presentan algunas conclusiones. In this paper the advantages of parallel computing are shown by solving the heat conduction equation in two dimensions with the forward in time central in space (FTCS) finite difference method. Two different levels of parallelization are consider and compared with traditional serial procedures. We show in this work the importance of parallel computing when dealing with large problems that are impractical or impossible to solve them with a serial computing procedure. In the first section a summary of parallel computing approach is presented. Subsequently, the forward in time central in space (FTCS) finite difference method for the heat conduction equation is outline, describing how the heat flow equation is derived in two dimensions and the particularities of the finite difference numerical technique considered. Then, a specific initial boundary value problem is solved by the FTCS finite difference method and serial and parallel pseudo codes are provided. Finally after results are discussed some conclusions are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Results from a search of the technical report database over a 10-year period ... references cover only unclassified, unlimited document references with abstracts."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A parallel computing environment to support optimization of large-scale engineering systems is designed and implemented on Windows-based personal computer networks, using the master-worker model and the Parallel Virtual Machine (PVM). It is involved in decomposition of a large engineering system into a number of smaller subsystems optimized in parallel on worker nodes and coordination of subsystem optimization results on the master node. The environment consists of six functional modules, i.e. the master control, the optimization model generator, the optimizer, the data manager, the monitor, and the post processor. Object-oriented design of these modules is presented. The environment supports steps from the generation of optimization models to the solution and the visualization on networks of computers. User-friendly graphical interfaces make it easy to define the problem, and monitor and steer the optimization process. It has been verified by an example of a large space truss optimization. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent research in multi-agent systems incorporate fault tolerance concepts. However, the research does not explore the extension and implementation of such ideas for large scale parallel computing systems. The work reported in this paper investigates a swarm array computing approach, namely ‘Intelligent Agents’. In the approach considered a task to be executed on a parallel computing system is decomposed to sub-tasks and mapped onto agents that traverse an abstracted hardware layer. The agents intercommunicate across processors to share information during the event of a predicted core/processor failure and for successfully completing the task. The agents hence contribute towards fault tolerance and towards building reliable systems. The feasibility of the approach is validated by simulations on an FPGA using a multi-agent simulator and implementation of a parallel reduction algorithm on a computer cluster using the Message Passing Interface.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents a methodology for multi-objective day-ahead energy resource scheduling for smart grids considering intensive use of distributed generation and Vehicle- To-Grid (V2G). The main focus is the application of weighted Pareto to a multi-objective parallel particle swarm approach aiming to solve the dual-objective V2G scheduling: minimizing total operation costs and maximizing V2G income. A realistic mathematical formulation, considering the network constraints and V2G charging and discharging efficiencies is presented and parallel computing is applied to the Pareto weights. AC power flow calculation is included in the metaheuristics approach to allow taking into account the network constraints. A case study with a 33-bus distribution network and 1800 V2G resources is used to illustrate the performance of the proposed method.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Article in Press, Corrected Proof