990 resultados para Pairing-based cryptography


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bilinear pairings can be used to construct cryptographic systems with very desirable properties. A pairing performs a mapping on members of groups on elliptic and genus 2 hyperelliptic curves to an extension of the finite field on which the curves are defined. The finite fields must, however, be large to ensure adequate security. The complicated group structure of the curves and the expensive field operations result in time consuming computations that are an impediment to the practicality of pairing-based systems. The Tate pairing can be computed efficiently using the ɳT method. Hardware architectures can be used to accelerate the required operations by exploiting the parallelism inherent to the algorithmic and finite field calculations. The Tate pairing can be performed on elliptic curves of characteristic 2 and 3 and on genus 2 hyperelliptic curves of characteristic 2. Curve selection is dependent on several factors including desired computational speed, the area constraints of the target device and the required security level. In this thesis, custom hardware processors for the acceleration of the Tate pairing are presented and implemented on an FPGA. The underlying hardware architectures are designed with care to exploit available parallelism while ensuring resource efficiency. The characteristic 2 elliptic curve processor contains novel units that return a pairing result in a very low number of clock cycles. Despite the more complicated computational algorithm, the speed of the genus 2 processor is comparable. Pairing computation on each of these curves can be appealing in applications with various attributes. A flexible processor that can perform pairing computation on elliptic curves of characteristic 2 and 3 has also been designed. An integrated hardware/software design and verification environment has been developed. This system automates the procedures required for robust processor creation and enables the rapid provision of solutions for a wide range of cryptographic applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have been investigating the cryptographical properties of in nite families of simple graphs of large girth with the special colouring of vertices during the last 10 years. Such families can be used for the development of cryptographical algorithms (on symmetric or public key modes) and turbocodes in error correction theory. Only few families of simple graphs of large unbounded girth and arbitrarily large degree are known. The paper is devoted to the more general theory of directed graphs of large girth and their cryptographical applications. It contains new explicit algebraic constructions of in finite families of such graphs. We show that they can be used for the implementation of secure and very fast symmetric encryption algorithms. The symbolic computations technique allow us to create a public key mode for the encryption scheme based on algebraic graphs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a new approach for secret key exchange involving the variation of the cavity length of an ultra-long fibre laser. The scheme is based on the realisation that the free spectral range of the laser cavity can be used as an information carrier. We present a proof-of-principle demonstration of this new concept using a 50-km-long fibre laser to link two users, both of whom can randomly add an extra 1-km-long fibre segment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

For the last decade, elliptic curve cryptography has gained increasing interest in industry and in the academic community. This is especially due to the high level of security it provides with relatively small keys and to its ability to create very efficient and multifunctional cryptographic schemes by means of bilinear pairings. Pairings require pairing-friendly elliptic curves and among the possible choices, Barreto-Naehrig (BN) curves arguably constitute one of the most versatile families. In this paper, we further expand the potential of the BN curve family. We describe BN curves that are not only computationally very simple to generate, but also specially suitable for efficient implementation on a very broad range of scenarios. We also present implementation results of the optimal ate pairing using such a curve defined over a 254-bit prime field. (C) 2001 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bildbasierte Authentifizierung und Verschlüsselung: Identitätsbasierte Kryptographie (oft auch identity Based Encryption, IBE) ist eine Variation der asymmetrischen Schlüsselverfahren, bei der der öffentliche Schlüssel des Anwenders eine beliebig wählbare Zeichenfolge sein darf, die dem Besitzer offensichtlich zugeordnet werden kann. Adi Shamir stellte 1984 zunächst ein solches Signatursystem vor. In der Literatur wird dabei als öffentlicher Schlüssel meist die Email-Adresse oder eine Sozialversicherungsnummer genannt. Der Preis für die freie Schlüsselwahl ist die Einbeziehung eines vertrauenswürdigen Dritten, genannt Private Key Generator, der mit seinem privaten Generalschlüssel den privaten Schlüssel des Antragstellers generiert. Mit der Arbeit von Boneh und Franklin 2001 zum Einsatz der Weil-Paarbildung über elliptischen Kurven wurde IBE auf eine sichere und praktikable Grundlage gestellt. In dieser Arbeit wird nach einer allgemeinen Übersicht über Probleme und Lösungsmöglichkeiten für Authentifizierungsaufgaben im zweiten Teil als neue Idee der Einsatz eines Bildes des Anwenders als öffentlicher Schlüssel vorgeschlagen. Dazu wird der Ablauf der Schlüsselausgabe, die Bestellung einer Dienstleistung, z. B. die Ausstellung einer personengebundenen Fahrkarte, sowie deren Kontrolle dargestellt. Letztere kann offline auf dem Gerät des Kontrolleurs erfolgen, wobei Ticket und Bild auf dem Handy des Kunden bereitliegen. Insgesamt eröffnet sich dadurch die Möglichkeit einer Authentifizierung ohne weitere Preisgabe einer Identität, wenn man davon ausgeht, dass das Bild einer Person angesichts allgegenwärtiger Kameras sowieso öffentlich ist. Die Praktikabilität wird mit einer Implementierung auf der Basis des IBE-JCA Providers der National University of Ireland in Maynooth demonstriert und liefert auch Aufschluss auf das in der Praxis zu erwartende Laufzeitverhalten.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As the development of a viable quantum computer nears, existing widely used public-key cryptosystems, such as RSA, will no longer be secure. Thus, significant effort is being invested into post-quantum cryptography (PQC). Lattice-based cryptography (LBC) is one such promising area of PQC, which offers versatile, efficient, and high performance security services. However, the vulnerabilities of these implementations against side-channel attacks (SCA) remain significantly understudied. Most, if not all, lattice-based cryptosystems require noise samples generated from a discrete Gaussian distribution, and a successful timing analysis attack can render the whole cryptosystem broken, making the discrete Gaussian sampler the most vulnerable module to SCA. This research proposes countermeasures against timing information leakage with FPGA-based designs of the CDT-based discrete Gaussian samplers with constant response time, targeting encryption and signature scheme parameters. The proposed designs are compared against the state-of-the-art and are shown to significantly outperform existing implementations. For encryption, the proposed sampler is 9x faster in comparison to the only other existing time-independent CDT sampler design. For signatures, the first time-independent CDT sampler in hardware is proposed. 

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aquest memoria descriu els fonaments teòrics i la funcionalitat d'una aplicació per a cifrar arxius i directoris utilitzant la norma PKCS#5 dels laboratoris RSA, a més d'una modificació de la norma (algorisme TripelDES) per a aconseguir cifres més fortes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nonlinear dynamics has emerged into a prominent area of research in the past few Decades.Turbulence, Pattern formation,Multistability etc are some of the important areas of research in nonlinear dynamics apart from the study of chaos.Chaos refers to the complex evolution of a deterministic system, which is highly sensitive to initial conditions. The study of chaos theory started in the modern sense with the investigations of Edward Lorentz in mid 60's. Later developments in this subject provided systematic development of chaos theory as a science of deterministic but complex and unpredictable dynamical systems. This thesis deals with the effect of random fluctuations with its associated characteristic timescales on chaos and synchronization. Here we introduce the concept of noise, and two familiar types of noise are discussed. The classifications and representation of white and colored noise are introduced. Based on this we introduce the concept of randomness that we deal with as a variant of the familiar concept of noise. The dynamical systems introduced are the Rossler system, directly modulated semiconductor lasers and the Harmonic oscillator. The directly modulated semiconductor laser being not a much familiar dynamical system, we have included a detailed introduction to its relevance in Chaotic encryption based cryptography in communication. We show that the effect of a fluctuating parameter mismatch on synchronization is to destroy the synchronization. Further we show that the relation between synchronization error and timescales can be found empirically but there are also cases where this is not possible. Studies show that under the variation of the parameters, the system becomes chaotic, which appears to be the period doubling route to chaos.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reticulados têm sido aplicados de diferentes maneiras em criptografia. Inicialmente utilizados para a destruição de criptossistemas, eles foram posteriormente aplicados na construção de novos esquemas, incluindo criptossistemas assimétricos, esquemas de assinatura cega e os primeiros métodos para encriptação completamente homomórfica. Contudo, seu desempenho ainda é proibitivamente lenta em muitos casos. Neste trabalho, expandimos técnicas originalmente desenvolvidas para encriptação homomórfica, tornando-as mais genéricas e aplicando-as no esquema GGH-YK-M, um esquema de encriptação de chave pública, e no esquema LMSV, a única construção homomórfica que não sucumbiu a ataques de recuperação de chaves IND-CCA1 até o momento. Em nossos testes, reduzimos o tamanho das chaves do GGH-YK-M em uma ordem de complexidade, especificamente, de O(n2 lg n) para O(n lg n), onde n é um parâmetro público do esquema. A nova técnica também atinge processamento mais rápido em todas as operações envolvidas em um criptossistema assimétrico, isto é, geração de chaves, encriptação e decriptação. A melhora mais significativa é na geração de chaves, que se torna mais de 3 ordens de magnitude mais rápida que resultados anteriores, enquanto a encriptação se torna por volta de 2 ordens de magnitude mais rápida. Para decriptação, nossa implementação é dez vezes mais rápida que a literatura. Também mostramos que é possível aumentar a segurança do esquema LMSV contra os ataques quânticos de recuperação de chaves recentemente publicados pela agência britânica GCHQ. Isso é feito através da adoção de reticulados não-ciclotômicos baseados em anéis polinomiais irredutíveis quase-circulantes. Em nossa implementação, o desempenho da encriptação é virtualmente idêntico, e a decriptação torna-se ligeiramente inferior, um pequeno preço a se pagar pelo aumento de segurança. A geração de chaves, porém, é muito mais lenta, devido à necessidade de se utilizar um método mais genérico e caro. A existência de métodos dedicados altamente eficientes para a geração de chaves nesta variante mais segura do LMSV permanece como um problema em aberto.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

CysView is a web-based application tool that identifies and classifies proteins according to their disulfide connectivity patterns. It accepts a dataset of annotated protein sequences in various formats and returns a graphical representation of cysteine pairing patterns. CysView displays cysteine patterns for those records in the data with disulfide annotations. It allows the viewing of records grouped by connectivity patterns. CysView's utility as an analysis tool was demonstrated by the rapid and correct classification of scorpion toxin entries from GenPept on the basis of their disulfide pairing patterns. It has proved useful for rapid detection of irrelevant and partial records, or those with incomplete annotations. CysView can be used to support distant homology between proteins. CysView is publicly available at http://research.i2r.a-star.edu.sg/CysView/.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

L'objectiu principal del projecte és l'estudi, la implementació d'algoritmes i protocols amb criptografia basada en la identitat. Aquesta o Identity Based Encryption (IBE) s'utilitza per simplificar el procés de comunicacions segures, com per exemple el correu electrònic. IBE permet a les polítiques de seguretat ser codificades directament sense la necessitat d'usar certificats. Aquests esquemes van ser proposats inicialment per A. Shamir a l'any 1984 i han estat objecte d'estudi per D. Boneh, S. Galbraith, etc. En aquest farem l'estudi dels emparellaments de Werl i Tate a través de l'algorisme de Miller, que ens permetrà implementar aquests emparellaments sobre corbes el·líptiques supersingulars.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The superconducting gap is a basic character of a superconductor. While the cuprates and conventional phonon-mediated superconductors are characterized by distinct d- and s-wave pairing symmetries with nodal and nodeless gap distributions respectively, the superconducting gap distributions in iron-based superconductors are rather diversified. While nodeless gap distributions have been directly observed in Ba1–xKxFe2As2, BaFe2–xCoxAs2, LiFeAs, KxFe2–ySe2, and FeTe1–xSex, the signatures of a nodal superconducting gap have been reported in LaOFeP, LiFeP, FeSe, KFe2As2, BaFe2–xRuxAs2, and BaFe2(As1–xPx)2. Due to the multiplicity of the Fermi surface in these compounds s± and d pairing states can be both nodeless and nodal. A nontrivial orbital structure of the order parameter, in particular the presence of the gap nodes, leads to effects in which the disorder is much richer in dx2–y2-wave superconductors than in conventional materials. In contrast to the s-wave case, the Anderson theorem does not work, and nonmagnetic impurities exhibit a strong pair-breaking influence. In addition, a finite concentration of disorder produces a nonzero density of quasiparticle states at zero energy, which results in a considerable modification of the thermodynamic and transport properties at low temperatures. The influence of order parameter symmetry on the vortex core structure in iron-based pnictide and chalcogenide superconductors has been investigated in the framework of quasiclassical Eilenberger equations. The main results of the thesis are as follows. The vortex core characteristics, such as, cutoff parameter, ξh, and core size, ξ2, determined as the distance at which density of the vortex supercurrent reaches its maximum, are calculated in wide temperature, impurity scattering rate, and magnetic field ranges. The cutoff parameter, ξh(B; T; Г), determines the form factor of the flux-line lattice, which can be obtained in _SR, NMR, and SANS experiments. A comparison among the applied pairing symmetries is done. In contrast to s-wave systems, in dx2–y2-wave superconductors, ξh/ξc2 always increases with the scattering rate Г. Field dependence of the cutoff parameter affects strongly on the second moment of the magnetic field distributions, resulting in a significant difference with nonlocal London theory. It is found that normalized ξ2/ξc2(B/Bc2) dependence is increasing with pair-breaking impurity scattering (interband scattering for s±-wave and intraband impurity scattering for d-wave superconductors). Here, ξc2 is the Ginzburg-Landau coherence length determined from the upper critical field Bc2 = Φ0/2πξ2 c2, where Φ0 is a flux quantum. Two types of ξ2/ξc2 magnetic field dependences are obtained for s± superconductors. It has a minimum at low temperatures and small impurity scattering transforming in monotonously decreasing function at strong scattering and high temperatures. The second kind of this dependence has been also found for d-wave superconductors at intermediate and high temperatures. In contrast, impurity scattering results in decreasing of ξ2/ξc2(B/Bc2) dependence in s++ superconductors. A reasonable agreement between calculated ξh/ξc2 values and those obtained experimentally in nonstoichiometric BaFe2–xCoxAs2 (μSR) and stoichiometric LiFeAs (SANS) was found. The values of ξh/ξc2 are much less than one in case of the first compound and much more than one for the other compound. This is explained by different influence of two factors: the value of impurity scattering rate and pairing symmetry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is technically feasible for mobile social software such as pairing or ‘matchmaking’ systems to introduce people to others and assist information exchange. However, little is known about the social structure of many mobile communities or why they would want such pairing systems. While engaged in other work determining requirements for a mobile travel assistant we saw a potentially useful application for a pairing system to facilitate the exchange of travel information between backpackers. To explore this area, we designed two studies involving usage of a low-fidelity role prototype of a social pairing system for backpackers. Backpackers rated the utility of different pairing types, and provided feedback on the social implications of being paired based on travel histories. Practical usage of the social network pairing activity and the implications of broader societal usage are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To define the location of potential oncogenes and tumor suppressor genes in ocular melanoma we carried out comparative genomic hybridization (CGH) analysis on a population-based series of 25 formalin-fixed, paraffin-embedded primary tumors comprising 17 choroidal, 2 ciliary body, 4 iris, and 2 conjunctival melanomas. Twelve (48%) of the 25 melanomas showed no chromosomal changes and 13 (52%) had at least one chromosomal gain or loss. The mean number of CGH changes in all tumors was 3.3, with similar mean numbers of chromosomal gains (1.5) and losses (1.8). The highest number of chromosomal changes (i.e., nine) occurred in a conjunctival melanoma and included four changes not observed in tumors at any other ocular site (gains in 22q and 11p and losses in 6p and 17p). The most frequent gains in all primary ocular melanomas were on chromosome arm 8q (69%), 6p (31%) and 8p (23%) and the most frequent losses were on 6q (38%), 10q (23%), and 16q (23%). The most common pairing was gain in 8p and gain in 8q, implying a whole chromosome copy number increase; gains in 8p occurred only in conjunction with gains in 8q. The smallest regions of copy number alteration were mapped to gain of 8q21 and loss of 6q21, 10q21, and 16q22. Sublocalization of these chromosomal changes to single-band resolution should accelerate the identification of genes involved in the genesis of ocular melanoma.