53 resultados para PAVON


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim of study: To identify species of wood samples based on common names and anatomical analyses of their transversal surfaces (without microscopic preparations). Area of study: Spain and South America Material and methods: The test was carried out on a batch of 15 lumber samples deposited in the Royal Botanical Garden in Madrid, from the expedition by Ruiz and Pavon (1777-1811). The first stage of the methodology is to search and to make a critical analysis of the databases which list common nomenclature along with scientific nomenclature. A geographic filter was then applied to the information resulting from the samples with a more restricted distribution. Finally an anatomical verification was carried out with a pocket microscope with a magnification of x40, equipped with a 50 micrometers resolution scale. Main results: The identification of the wood based exclusively on the common name is not useful due to the high number of alternative possibilities (14 for “naranjo”, 10 for “ébano”, etc.). The common name of one of the samples (“huachapelí mulato”) enabled the geographic origin of the samples to be accurately located to the shipyard area in Guayaquil (Ecuador). Given that Ruiz y Pavon did not travel to Ecuador, the specimens must have been obtained by Tafalla. It was possible to determine correctly 67% of the lumber samples from the batch. In 17% of the cases the methodology did not provide a reliable identification. Research highlights: It was possible to determine correctly 67% of the lumber samples from the batch and their geographic provenance. The identification of the wood based exclusively on the common name is not useful.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O gênero Palicourea Aubl. (Rubiaceae) é restrito aos neotrópicos e inclui aproximadamente 200 espécies de arbustos ou pequenas árvores, que produzem flores tubulares, coloridas e sem odor, dispostas em inflorescências paniculadas e polinizadas por beija-flores, sendo quase todas as espécies distílicas. Homostilia é uma condição rara no gênero. O objetivo do estudo foi caracterizar a biologia reprodutiva de Palicourea macrobotrys Ruiz & Pavon e sua biologia de polinização, avaliando o sistema reprodutivo. O estudo foi desenvolvido na Estação Ecológica do Panga, município de Uberlândia, MG (19°11'10" S e 48°24'35" W), entre os meses de maio de 2000 e maio de 2001. A espécie floresceu de dezembro a junho, e frutificou a partir de março; apresenta inflorescências com cerca de 60 flores hermafroditas, pentâmeras, isostêmones e homostílicas. A flor abre entre 5:00 e 7:00 h e dura cerca de 14 horas. O volume de néctar produzido é de 6,86 µL, com concentração média de açúcares de 18%. Os visitantes florais observados foram formigas, uma espécie de abelha, borboletas e beija-flores, principalmente no período da manhã, entre 7:00 e 12:00 h. O beija-flor Thalurania furcata foi considerado o principal polinizador devido ao seu comportamento na flor e freqüência de visitas. A espécie é autocompatível, sendo que os tubos polínicos atingem o ovário quatro horas após as autopolinizações e as polinizações cruzadas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to assess the asexual propagation of Psychotria viridis by leaf cuttings. The treatments were: A - Whole leaf cuttings, B - leaf cuttings with the top third cut off; C - with the lower third of the cuttings removed; D - with cuts on the primary vein of leaf cuttings, and E - poles with cuts on the leaf's secondary veins. The cuttings were immersed in distilled water for a period of 70 days. In all the treatments, the rooting was observed to occur in the region of the cut, or the place where the incision in the vein was. Current assay shows the feasibilities of Psychotria viridis leaf stalks and concludes that cuttings at the nerve ends highlight rooting in so far as the leaf stalks remain in permanent contact with the plant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the present work is the presentation of a quantification methodology for the control of the amount of superparamagnetic iron oxide nanoparticles (SPIONs) administered in biological materials by means of the ferromagnetic resonance technique (FMR) applied to studies both in vivo and in vitro. The in vivo study consisted in the analysis of the elimination and biodistribution kinetics of SPIONs after intravenous administration in Wistar rats. The results were corroborated by X-ray fluorescence. For the in vitro study, a quantitative analysis of the concentration of SPIONs bound to the specific AC133 monoclonal antibodies was carried out in order to detect the expression of the antigenic epitopes (CD133) in stem cells from human umbilical cord blood. In both studies FMR has proven to be an efficient technique for the SPIONs quantification per volume unit (in vivo) or per labeled cell (in vitro).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite recent advances, patients with malignant brain tumors still have a poor prognosis. Glioblastoma (WHO grade 4 astrocytoma), the most malignant brain tumor, represents 50% of all astrocytomas, with a median survival rate of <1 year. It is, therefore, extremely important to search for new diagnostic and therapeutic approaches for patients with glioblastoma. This study describes the application of superparamagnetic nano-particles of iron oxide, as well as monoclonal antibodies, of immunophenotypic significance, conjoined to quantum dots for the ultrastructural assessment of glioblastoma cells. For this proposal, an immunophenotypic study by flow cytometry was carried out, followed by transmission electron microscopy analysis. The process of tumor cell labeling using nanoparticles can successfully contribute to the identification of tumorigenic cells and consequently for better understanding of glioblastoma genesis and recurrence. In addition, this method may help further studies in tumor imaging, diagnosis, and prognostic markers detection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adherent umbilical cord blood stromal cells (AUCBSCs) are multipotent cells with differentiation capacities. Therefore, these cells have been investigated for their potential in cell-based therapies. Quantum Dots (QDs) are an alternative to organic dyes and fluorescent proteins because of their long-term photostability. In this study we determined the effects of the cell passage on AUCBSCs morphology, phenotype, and differentiation potential. QDs labeled AUCBSCs in the fourth cell passage were differentiated in the three mesodermal lineages and were evaluated using cytochemical methods and transmission electron microscopy (TEM). Gene and protein expression of the AUCBSCs immunophenotypic markers were also evaluated in the labeled cells by real-time quantitative PCR and flow cytometry. In this study we were able to define the best cellular passage to work with AUCBSCs and we also demonstrated that the use of fluorescent QDs can be an efficient nano-biotechnological tool in differentiation studies because labeled cells do not have their characteristics compromised.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Superparamagnetic iron oxide nanoparticles (SPIONs) are applied in stem cell labeling because of their high magnetic susceptibility as compared with ordinary paramagnetic species, their low toxicity, and their ease of magnetic manipulation. The present work is the study of CD133(+) stem cell labeling by SPIONs coupled to a specific antibody (AC133), resulting in the antigenic labeling of the CD133+ stem cell, and a method was developed for the quantification of the SPION content per cell, necessary for molecular imaging optimization. Flow cytometry analysis established the efficiency of the selection process and helped determine that the CD133 cells selected by chromatographic affinity express the transmembrane glycoprotein CD133. The presence of antibodies coupled to the SPION, expressed in the cell membrane, was observed by transmission electron microscopy. Quantification of the SPION concentration in the marked cells using the ferromagnetic resonance technique resulted in a value of 1.70 x 10 (13) mol iron (9.5 pg) or 7.0 x 10 (6) nanoparticles per cell ( the measurement was carried out in a volume of 2 mu L containing about 6.16 x 10 5 pg iron, equivalent to 4.5 x 10 (11) SPIONs). (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CD133 antigen is an integral membrane glycoprotein that can bind with different cells. Originally, however. this cellular surface antigen was expressed in human stem cells and in various cellular progenitors of the haematopoietic system. Human cord blood has been described as an excellent source of CD133(+) haematopoietic progenitor cells with a large application potential. One of the main objectives of the present study is to describe for the first time the ultrastructural characteristics of CD133(+) stem cells using transmission electronic microscopy. Another objective of the manuscript is to demonstrate through transmission electronic microscopy the molecular image of magnetic nanoparticles connected to the stein cells of great biotechnological importance, as well as demonstrating the value of this finding for electronic paramagnetic resonance and its related nanobioscientific value. Ultrastructural results showed the monoclonal antibody anti-CD133 bound to the superparamagnetic nanoparticles by the presence of electrondense granules in cell membrane, as well as in the cytoplasm, revealing the ultrastructural characteristics of CD133(+) cells, exhibiting a round morphology with discrete cytoplasmic projections, having an active nucleus that follows this morphology. The cellular cytoplasm was filled up with mitochondrias, as well as microtubules and vesicles pinocitic. characterizing the process as being related to internalization of the magnetic nanoparticles that were endocyted by the cells in question. Electronic paramagnetic resonance analysis of the CD133(+) stem cells detected that the small (spectrum) generated by the labelled cells comes from the superparamagnetic nanoparticles that are bound to them. These results strongly suggest that these CD133(+) cells can be used in nanobiotechnology applications, with benefits in different biomedical areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work is to provide a quantitative method for analysis of the concentration of superparamagnetic iron oxide nanoparticles (SPION), determined by means of ferromagnetic resonance (FMR), with the nanoparticles coupled to a specific antibody (AC133), and thus to express the antigenic labeling evidence for the stem cells C D133(+). The FMR efficiency and sensitivity were proven adequate for detecting and quantifying the low amounts of iron content in the C D133(+) cells (similar to 6.16 x 10(5) pg in the volume of 2 mu l containing 4.5 x 1011 SPION). The quantitative method led to the result of 1.70 x 10(-13) mol of Fe (9.5 pg), or 7.0 x 10(6) nanoparticles per cell. For the quantification analysis via the FMR technique it was necessary to carry out a preliminary quantitative visualization of iron oxide-labeled cells in order to ensure that the nanoparticles coupled to the antibodies are indeed tied to the antigen at the stem cell surface and that the cellular morphology was conserved, as proof of the validity of this method. The quantitative analysis by means of FMR is necessary for determining the signal intensity for the study of molecular imaging by means of magnetic resonance imaging (MRI).