993 resultados para Over sampling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This contribution proposes a novel probability density function (PDF) estimation based over-sampling (PDFOS) approach for two-class imbalanced classification problems. The classical Parzen-window kernel function is adopted to estimate the PDF of the positive class. Then according to the estimated PDF, synthetic instances are generated as the additional training data. The essential concept is to re-balance the class distribution of the original imbalanced data set under the principle that synthetic data sample follows the same statistical properties. Based on the over-sampled training data, the radial basis function (RBF) classifier is constructed by applying the orthogonal forward selection procedure, in which the classifier’s structure and the parameters of RBF kernels are determined using a particle swarm optimisation algorithm based on the criterion of minimising the leave-one-out misclassification rate. The effectiveness of the proposed PDFOS approach is demonstrated by the empirical study on several imbalanced data sets.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper examines the prevalence of dieting behaviours and correlates with physical and mental health in young Australian women who are participants in the Australian Longitudinal Stud of Women's Health. A total of 14 686 women aged 18-23 years, randomly selected from the National Medicare database, with over-sampling from rural and remote areas, responded to a questionnaire seeking dieting and health information. The results showed that 66.5 percent of the women had a BMI within the healthy weight range (18- < 25 kg/m(2)). However only 21.6 percent of these women were happy with their weight and almost half (46 percent) had dieted to lose weight in the last year (also one in five who had a BMI < 18.5 kg/m(2)). High frequency of dieting (rather than dieting per se) and earlier dieting onset were associated with poorer physical and mental health (including depression), more disordered eating (bingeing and purging), extreme weight and shape dissatisfaction and more frequent general health problems. The results suggest that there is a need for programmes that will enhance self esteem and weight/shape acceptance and promote more appropriate strategies for maintenance of healthy weight. Copyright (C) 2001 John Wiley & Sons, Ltd and Eating Disorders Association.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

15th IEEE International Conference on Electronics, Circuits and Systems, Malta

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Contexte. Les études cas-témoins sont très fréquemment utilisées par les épidémiologistes pour évaluer l’impact de certaines expositions sur une maladie particulière. Ces expositions peuvent être représentées par plusieurs variables dépendant du temps, et de nouvelles méthodes sont nécessaires pour estimer de manière précise leurs effets. En effet, la régression logistique qui est la méthode conventionnelle pour analyser les données cas-témoins ne tient pas directement compte des changements de valeurs des covariables au cours du temps. Par opposition, les méthodes d’analyse des données de survie telles que le modèle de Cox à risques instantanés proportionnels peuvent directement incorporer des covariables dépendant du temps représentant les histoires individuelles d’exposition. Cependant, cela nécessite de manipuler les ensembles de sujets à risque avec précaution à cause du sur-échantillonnage des cas, en comparaison avec les témoins, dans les études cas-témoins. Comme montré dans une étude de simulation précédente, la définition optimale des ensembles de sujets à risque pour l’analyse des données cas-témoins reste encore à être élucidée, et à être étudiée dans le cas des variables dépendant du temps. Objectif: L’objectif général est de proposer et d’étudier de nouvelles versions du modèle de Cox pour estimer l’impact d’expositions variant dans le temps dans les études cas-témoins, et de les appliquer à des données réelles cas-témoins sur le cancer du poumon et le tabac. Méthodes. J’ai identifié de nouvelles définitions d’ensemble de sujets à risque, potentiellement optimales (le Weighted Cox model and le Simple weighted Cox model), dans lesquelles différentes pondérations ont été affectées aux cas et aux témoins, afin de refléter les proportions de cas et de non cas dans la population source. Les propriétés des estimateurs des effets d’exposition ont été étudiées par simulation. Différents aspects d’exposition ont été générés (intensité, durée, valeur cumulée d’exposition). Les données cas-témoins générées ont été ensuite analysées avec différentes versions du modèle de Cox, incluant les définitions anciennes et nouvelles des ensembles de sujets à risque, ainsi qu’avec la régression logistique conventionnelle, à des fins de comparaison. Les différents modèles de régression ont ensuite été appliqués sur des données réelles cas-témoins sur le cancer du poumon. Les estimations des effets de différentes variables de tabac, obtenues avec les différentes méthodes, ont été comparées entre elles, et comparées aux résultats des simulations. Résultats. Les résultats des simulations montrent que les estimations des nouveaux modèles de Cox pondérés proposés, surtout celles du Weighted Cox model, sont bien moins biaisées que les estimations des modèles de Cox existants qui incluent ou excluent simplement les futurs cas de chaque ensemble de sujets à risque. De plus, les estimations du Weighted Cox model étaient légèrement, mais systématiquement, moins biaisées que celles de la régression logistique. L’application aux données réelles montre de plus grandes différences entre les estimations de la régression logistique et des modèles de Cox pondérés, pour quelques variables de tabac dépendant du temps. Conclusions. Les résultats suggèrent que le nouveau modèle de Cox pondéré propose pourrait être une alternative intéressante au modèle de régression logistique, pour estimer les effets d’expositions dépendant du temps dans les études cas-témoins

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The demand for new telecommunication services requiring higher capacities, data rates and different operating modes have motivated the development of new generation multi-standard wireless transceivers. In multistandard design, sigma-delta based ADC is one of the most popular choices. To this end, in this paper we present cascaded 2-2-2 reconfigurable sigma-delta modulator that can handle GSM, WCDMA and WLAN standards. The modulator makes use of a low-distortion swing suppression topology which is highly suitable for wide band applications. In GSM mode, only the first stage (2nd order Σ-Δ ADC) is used to achieve a peak SNDR of 88dB with oversampling ratio of 160 for a bandwidth of 200KHz and for WCDMA mode a 2-2 cascaded structure (4th order) is turned on with 1-bit in the first stage and 2-bit in the second stage to achieve 74 dB peak SNDR with over-sampling ratio of 16 for a bandwidth of 2MHz. Finally, a 2-2-2 cascaded MASH architecture with 4-bit in the last stage is proposed to achieve a peak SNDR of 58dB for WLAN for a bandwidth of 20MHz. The novelty lies in the fact that unused blocks of second and third stages can be made inactive to achieve low power consumption. The modulator is designed in TSMC 0.18um CMOS technology and operates at 1.8 supply voltage

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Over-sampling sigma-delta analogue-to-digital converters (ADCs) are one of the key building blocks of state of the art wireless transceivers. In the sigma-delta modulator design the scaling coefficients determine the overall signal-to-noise ratio. Therefore, selecting the optimum value of the coefficient is very important. To this end, this paper addresses the design of a fourthorder multi-bit sigma-delta modulator for Wireless Local Area Networks (WLAN) receiver with feed-forward path and the optimum coefficients are selected using genetic algorithm (GA)- based search method. In particular, the proposed converter makes use of low-distortion swing suppression SDM architecture which is highly suitable for low oversampling ratios to attain high linearity over a wide bandwidth. The focus of this paper is the identification of the best coefficients suitable for the proposed topology as well as the optimization of a set of system parameters in order to achieve the desired signal-to-noise ratio. GA-based search engine is a stochastic search method which can find the optimum solution within the given constraints.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This contribution proposes a powerful technique for two-class imbalanced classification problems by combining the synthetic minority over-sampling technique (SMOTE) and the particle swarm optimisation (PSO) aided radial basis function (RBF) classifier. In order to enhance the significance of the small and specific region belonging to the positive class in the decision region, the SMOTE is applied to generate synthetic instances for the positive class to balance the training data set. Based on the over-sampled training data, the RBF classifier is constructed by applying the orthogonal forward selection procedure, in which the classifier's structure and the parameters of RBF kernels are determined using a PSO algorithm based on the criterion of minimising the leave-one-out misclassification rate. The experimental results obtained on a simulated imbalanced data set and three real imbalanced data sets are presented to demonstrate the effectiveness of our proposed algorithm.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vehicular networks ensure that the information received from any vehicle is promptly and correctly propagated to nearby vehicles, to prevent accidents. A crucial point is how to trust the information transmitted, when the neighboring vehicles are rapidly changing and moving in and out of range. Current trust management schemes for vehicular networks establish trust by voting on the decision received by several nodes, which might not be required for practical scenarios. It might just be enough to check the validity of incoming information. Due to the ephemeral nature of vehicular networks, reputation schemes for mobile ad hoc networks (MANETs) cannot be applied to vehicular ad hoc networks (VANET). We point out several limitations of trust management schemes for VANET. In particular, we identify the problem of information cascading and oversampling, which commonly arise in social networks. Oversampling is a situation in which a node observing two or more nodes, takes into consideration both their opinions equally without knowing that they might have influenced each other in decision making. We show that simple voting for decision making, leads to oversampling and gives incorrect results. We propose an algorithm to overcome this problem in VANET. This is the first paper which discusses the concept of cascading effect and oversampling effects to ad hoc networks. © 2011 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this thesis, we develop an adaptive framework for Monte Carlo rendering, and more specifically for Monte Carlo Path Tracing (MCPT) and its derivatives. MCPT is attractive because it can handle a wide variety of light transport effects, such as depth of field, motion blur, indirect illumination, participating media, and others, in an elegant and unified framework. However, MCPT is a sampling-based approach, and is only guaranteed to converge in the limit, as the sampling rate grows to infinity. At finite sampling rates, MCPT renderings are often plagued by noise artifacts that can be visually distracting. The adaptive framework developed in this thesis leverages two core strategies to address noise artifacts in renderings: adaptive sampling and adaptive reconstruction. Adaptive sampling consists in increasing the sampling rate on a per pixel basis, to ensure that each pixel value is below a predefined error threshold. Adaptive reconstruction leverages the available samples on a per pixel basis, in an attempt to have an optimal trade-off between minimizing the residual noise artifacts and preserving the edges in the image. In our framework, we greedily minimize the relative Mean Squared Error (rMSE) of the rendering by iterating over sampling and reconstruction steps. Given an initial set of samples, the reconstruction step aims at producing the rendering with the lowest rMSE on a per pixel basis, and the next sampling step then further reduces the rMSE by distributing additional samples according to the magnitude of the residual rMSE of the reconstruction. This iterative approach tightly couples the adaptive sampling and adaptive reconstruction strategies, by ensuring that we only sample densely regions of the image where adaptive reconstruction cannot properly resolve the noise. In a first implementation of our framework, we demonstrate the usefulness of our greedy error minimization using a simple reconstruction scheme leveraging a filterbank of isotropic Gaussian filters. In a second implementation, we integrate a powerful edge aware filter that can adapt to the anisotropy of the image. Finally, in a third implementation, we leverage auxiliary feature buffers that encode scene information (such as surface normals, position, or texture), to improve the robustness of the reconstruction in the presence of strong noise.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the early 1900s, the wolf (Canis lupus) was extirpated from France and Switzerland. There is growing evidence that the species is presently recolonizing these countries in the western Alps. By sequencing the mitochondrial DNA (mtDNA) control region of various samples mainly collected in the field (scats, hairs, regurgitates, blood or tissue; n = 292), we could (1) develop a non-invasive method enabling the unambiguous attribution of these samples to wolf, fox (Vulpes vulpes) or dog (Canis familiaris), among others; (2) demonstrate that Italian, French and Swiss wolves share the same mtDNA haplotype, a haplotype that has never been found in any other wolf population world-wide. Combined together, field and genetic data collected over 10 years corroborate the scenario of a natural expansion of wolves from the Italian source population. Furthermore, such a genetic approach is of conservation significance, since it has important consequences for management decisions. This first long-term report using non-invasive sampling demonstrates that long-distance dispersers are common, supporting the hypothesis that individuals may often attempt to colonize far from their native pack, even in the absence of suitable corridors across habitats characterized by intense human activities.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The general assumption under which the (X) over bar chart is designed is that the process mean has a constant in-control value. However, there are situations in which the process mean wanders. When it wanders according to a first-order autoregressive (AR (1)) model, a complex approach involving Markov chains and integral equation methods is used to evaluate the properties of the (X) over bar chart. In this paper, we propose the use of a pure Markov chain approach to study the performance of the (X) over bar chart. The performance of the chat (X) over bar with variable parameters and the (X) over bar with double sampling are compared. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recent studies have shown that the (X) over bar chart with variable sampling intervals (VSI) and/or with variable sample sizes (VSS) detects process shifts faster than the traditional (X) over bar chart. This article extends these studies for processes that are monitored by both the (X) over bar and R charts. A Markov chain model is used to determine the properties of the joint (X) over bar and R charts with variable sample sizes and sampling intervals (VSSI). The VSSI scheme improves the joint (X) over bar and R control chart performance in terms of the speed with which shifts in the process mean and/or variance are detected.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A standard (X) over bar chart for controlling the process mean takes samples of size no at specified, equally-spaced, fixed-time points. This article proposes a modification of the standard (X) over bar chart that allows one to take additional samples, bigger than no, between these fixed times. The additional samples are taken from the process when there is evidence that the process mean moved from target. Following the notation proposed by Reynolds (1996a) and Costs (1997) we shortly call the proposed (X) over bar chart as VSSIFT (X) over bar chart: where VSSIFT means variable sample size and sampling intervals with fixed times. The (X) over bar chart with the VSSIFT feature is easier to be administered than a standard VSSI (X) over bar chart that is not constrained to sample at the specified fixed times. The performances of the charts in detecting process mean shifts are comparable.