115 resultados para Osteosarcoma
Resumo:
Soft tissue sarcomas are malignant tumours of mesenchymal origin. Because of infiltrative growth pattern, simple enucleation of the tumour causes a high rate of local recurrence. Instead, these tumours should be resected with a rim of normal tissue around the tumour. Data on the adequate margin width are scarce. At Helsinki University Central Hospital (HUCH) a multidisciplinary treatment group started in 1987. Surgical resection with a wide margin (2.5 cm) is the primary aim. In case of narrower margin radiation therapy is necessary. The role of adjuvant chemotherapy remains unclear. Our aims were to study local control by the surgical margin and to develop a new prognostic tool to aid decision-making on which patients should receive adjuvant chemotherapy. Patients with soft tissue sarcoma of the extremity or the trunk wall referred to HUCH during 1987-2002 form material in Studies I and II. External validation material comes from the Lund university sarcoma registry. The smallest surgical margin of at least 2.5 centimetres yielded local control of 89 per cent at five years. Amputation rate was 9 per cent. The proposed prognostic model with necrosis, vascular invasion, size on a continuous scale, depth, location and grade worked well both in Helsinki material and in the validation material, and it also showed good calibration. Based on the present study, we recommend the smallest surgical margin of 2-3 centimetres in soft tissue sarcoma irrespective of grade. Improvement in local control was present but modest in margins wider than 1 centimetre. In cases where gaining a wider margin would lead to a considerable loss of function, smaller margin is to be considered combined to radiation therapy. Patients treated with inadequate margins should be offered radiation therapy irrespective of tumour grade. Our new prognostic model to estimate 10-year survival probability in patients with soft tissue sarcoma of the extremities or trunk wall showed good dicscrimination and calibration. For time being the prognostic model is available for scientific use and further validations. In the future, the model may aid in clinical decision-making. For operable osteosarcoma, neoadjuvant multidrug chemotherapy followed by delayed surgery and multidrug adjuvant chemotherapy is the treatment of choice. Overall survival rates at five years are approximately 75 per cent in modern trials with classical osteosarcoma. All patients diagnosed and reported to the Finnish Cancer Registry with osteosarcoma in Finland during 1971-2005 form the material in Studies III and IV. Limb-salvage rate increased from 23 per cent to 78 per cent during 1971-2005. The 10-year sarcoma-specific survival for the whole study population improved from 32 per cent to 62 per cent. It was 75 per cent for patients with a local high-grade osteosarcoma of the extremity diagnosed during 1991-2005. This study outlines the improved prognosis of osteosarcoma patients in Finland with modern chemotherapy. The 10-year survival rates are good also in an international scale. Nonetheless, their limb-salvage rate remains inferior to those seen for highly selected patient series. Overall, the centralisation of osteosarcoma treatment would most likely improve both survival and limb-salvage rates even further.
Resumo:
369 p.
Resumo:
Osteosarcomas are the most prevalent primary bone tumors found in pediatric patients. To understand their molecular etiology, cell culture models are used to define disease mechanisms under controlled conditions. Many osteosarcoma cell lines (e.g., SAOS-2, U2OS, MG63) are derived from Caucasian patients. However, patients exhibit individual and ethnic differences in their responsiveness to irradiation and chemotherapy. This motivated the establishment of osteosarcoma cell lines (OS1, OS2, OS3) from three ethnically Chinese patients. OS1 cells, derived from a pre-chemotherapeutic tumor in the femur of a 6-year-old female, were examined for molecular markers characteristic for osteoblasts, stem cells, and cell cycle control by immunohistochemistry, reverse transcriptase-PCR, Western blotting and flow cytometry. OS I have aberrant G-banded karyotypes, possibly reflecting chromosomal abnormalities related to p53 deficiency. OS I had ossification profiles similar to human fetal osteoblasts rather than SAOS-2 which ossifies ab initio, (P
Resumo:
To understand the molecular etiology of osteosarcoma, we isolated and characterized a human osteosarcoma cell line (OS1). OS1 cells have high osteogenic potential in differentiation induction media. Molecular analysis reveals OS1 cells express the pocket protein pRB and the runt-related transcription factor Runx2. Strikingly, Runx2 is expressed at higher levels in OS1 cells than in human fetal osteoblasts. Both pRB and Runx2 have growth suppressive potential in osteoblasts and are key factors controlling competency for osteoblast differentiation. The high levels of Runx2 clearly suggest osteosarcomas may form from committed osteoblasts that have bypassed growth restrictions normally imposed by Runx2. Interestingly, OS1 cells do not exhibit p53 expression and thus lack a functional p53/p21 DNA damage response pathway as has been observed for other osteosarcoma cell types. Absence of this pathway predicts genomic instability and/or vulnerability to secondary mutations that may counteract the anti-proliferative activity of Runx2 that is normally observed in osteoblasts. We conclude OS1 cells provide a valuable cell culture model to examine molecular events that are responsible for the pathologic conversion of phenotypically normal osteoblast precursors into osteosarcoma cells.
Resumo:
Osteosarcoma (OS) is a primary bone tumor that is most prevalent during adolescence. RUNX2, which stimulates differentiation and suppresses proliferation of osteoblasts, is deregulated in OS. Here, we define pathological roles of RUNX2 in the etiology of OS and mechanisms by which RUNX2 expression is stimulated. RUNX2 is often highly expressed in human OS biopsies and cell lines. Small interference RNA (siRNA)-mediated depletion of RUNX2 inhibits growth of U2OS OS cells. RUNX2 levels are inversely linked to loss of p53 (which predisposes to OS) in distinct OS cell lines and osteoblasts. RUNX2 protein levels decrease upon stabilization of p53 with the MDM2 inhibitor Nutlin-3. Elevated RUNX2 protein expression is post-transcriptionally regulated and directly linked to diminished expression of several validated RUNX2 targeting microRNAs (miRNAs) in human OS cells compared to mesenchymal progenitor cells. The p53-dependent miR-34c is the most significantly down-regulated RUNX2 targeting miRNA in OS. Exogenous supplementation of miR-34c markedly decreases RUNX2 protein levels, while 3UTR reporter assays establish RUNX2 as a direct target of miR-34c in OS cells. Importantly, Nutlin-3 mediated stabilization of p53 increases expression of miR-34c and decreases RUNX2. Thus, a novel RUNX2-p53-miR34 network controls cell growth of osseous cells and is compromised in OS.
Resumo:
The main scope of this work was to evaluate the metabolic effects of anticancer agents (three conventional and one new) in osteosarcoma (OS) cells and osteoblasts, by measuring alterations in the metabolic profile of cells by nuclear magnetic resonance (NMR) spectroscopy metabolomics. Chapter 1 gives a theoretical framework of this work, beginning with the main metabolic characteristics that globally describe cancer as well as the families and mechanisms of action of drugs used in chemotherapy. The drugs used nowadays to treat OS are also presented, together with the Palladium(II) complex with spermine, Pd2Spm, potentially active against cancer. Then, the global strategy for cell metabolomics is explained and the state of the art of metabolomic studies that analyze the effect of anticancer agents in cells is presented. In Chapter 2, the fundamentals of the analytical techniques used in this work, namely for biological assays, NMR spectroscopy and multivariate and statistical analysis of the results are described. A detailed description of the experimental procedures adopted throughout this work is given in Chapter 3. The biological and analytical reproducibility of the metabolic profile of MG-63 cells by high resolution magic angle spinning (HRMAS) NMR is evaluated in Chapter 4. The metabolic impact of several factors (cellular integrity, spinning rate, temperature, time and acquisition parameters) on the 1H HRMAS NMR spectral profile and quality is analysed, enabling the definition of the best acquisition parameters for further experiments. The metabolic consequences of increasing number of passages in MG-63 cells as well as the duration of storage are also investigated. Chapter 5 describes the metabolic impact of drugs conventionally used in OS chemotherapy, through NMR metabolomics studies of lysed cells and aqueous extracts analysis. The results show that MG-63 cells treated with cisplatin (cDDP) undergo a strong up-regulation of lipid contents, alterations in phospholipid constituents (choline compounds) and biomarkers of DNA degradation, all associated with cell death by apoptosis. Cells exposed to doxorubicin (DOX) or methotrexate (MTX) showed much slighter metabolic changes, without any relevant alteration in lipid contents. However, metabolic changes associated with altered Krebs cycle, oxidative stress and nucleotides metabolism were detected and were tentatively interpreted at the light of the known mechanisms of action of these drugs. The metabolic impact of the exposure of MG-63 cells and osteoblasts to cDDP and the Pd2Spm complex is described in Chapter 6. Results show that, despite the ability of the two agents to bind DNA, the metabolic consequences that arise from exposure to them are distinct, namely in what concerns to variation in lipid contents (absent for Pd2Spm). Apoptosis detection assays showed that, differently from what was seen for MG-63 cells treated with cDDP, the decreased number of living cells upon exposure to Pd2Spm was not due to cell death by apoptosis or necrosis. Moreover, the latter agent induces more marked alterations in osteoblasts than in cancer cells, while the opposite seemed to occur upon cDDP exposure. Nevertheless, the results from MG-63 cells exposure to combination regimens with cDDP- or Pd2Spm-based cocktails, described in Chapter 7, revealed that, in combination, the two agents induce similar metabolic responses, arising from synergy mechanisms between the tested drugs. Finally, the main conclusions of this thesis are summarized in Chapter 8, and future perspectives in the light of this work are presented.
Resumo:
Bone tumor incidence in women peaks at age 50-60, coinciding with the menopause. That estrogen (E2) and triiodothyronine (T3) interact in bone metabolism has been well established. However, few data on the action of these hormones are available. Our purpose was to determine the role of E2 and T3 in the expression of bone activity markers, namely alkaline phosphatase (AP) and receptor activator of nuclear factor kappa B ligand (RANKL). Two osteosarcoma cell lines: MG-63 (which has both estrogen (ER) and thyroid hormone (TR) receptors) and SaOs-29 (ER receptors only) were treated with infraphysiological E2 associated with T3 at infraphysiological, physiological, and supraphysiological concentrations. Real-time RT-PCR was used for expression analysis. Our results show that, in MG-63 cells, infraphysiological E2 associated with supraphysiological T3 increases AP expression and decreases RANKL expression, while infraphysiological E2 associated with either physiological or supraphysiological T3 decreases both AP and RANKL expression. On the other hand, in SaOs-2 cells, the same hormone combinations had no significant effect on the markers` expression. Thus, the analysis of hormone receptors was shown to be crucial for the assessment of tumor potential growth in the face of hormonal changes. Special care should be provided to patients with T3 and E2 hormone receptors that may increase tumor growth. Copyright (C) 2007 John Wiley & Sons, Ltd.
Resumo:
Osteosarcoma is a common primary malignant tumor in long bones; it generally occurs in young adults. It is considered infrequent in the head and neck regions, where it is usually associated with poor outcomes and rates of survival. From a histopathologic point of view, osteosarcomas are commonly classified as osteoblastic, chondroblastic, or fibroblastic, although several unusual microscopic subtypes have also been reported. The purpose of this article was to present a case report of a maxillary chondroblastic osteosarcoma involving the maxillary sinus and the maxilla of a young woman who was diagnosed during early postorthodontic treatment follow-up. Treatment, prosthetic rehabilitation, and follow-up details are provided. Most importantly, this patient shows the importance of complete and systematic oral examinations during any routine dental treatment. (Am J Orthod Dentofacial Orthop 2011;139:845-8)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Bone tumor incidence in women peaks at age 50-60, coinciding with the menopause. That estrogen (E2) and triiodothyronine (T3) interact in bone metabolism has been well established. However, few data on the action of these hormones are available. Our purpose was to determine the role of E2 and T3 in the expression of bone activity markers, namely alkaline phosphatase (AP) and receptor activator of nuclear factor κB ligand (RANKL). Two osteosarcoma cell lines: MG-63 (which has both estrogen (ER) and thyroid hormone (TR) receptors) and SaOs-29 (ER receptors only) were treated with infraphysiological E2 associated with T3 at infraphysiological, physiological, and supraphysiological concentrations. Real-time RT-PCR was used for expression analysis. Our results show that, in MG-63 cells, infraphysiological E2 associated with supraphysiological T3 increases AP expression and decreases RANKL expression, while infraphysiological E2 associated with either physiological or supraphysiological T3 decreases both AP and RANKL expression. On the other hand, in SaOs-2 cells, the same hormone combinations had no significant effect on the markers' expression. Thus, the analysis of hormone receptors was shown to be crucial for the assessment of tumor potential growth in the face of hormonal changes. Special care should be provided to patients with T3 and E2 hormone receptors that may increase tumor growth. Copyright © 2007 John Wiley & Sons, Ltd.
Resumo:
Introduction. Osteosarcomas are highly malignant bone-forming neoplasms that account for about 20% of all sarcomas. In light of their aggressive behavior, early diagnosis is crucial for determining adequate treatment. Dental professionals may be the first to detect jaw osteosarcomas in their initial stages. The aim of this case report is to draw attention to the possibility of diagnosing this tumor based on clinical, radiographical and cytological characteristics before confirmation by histology. Case presentation. A 24-year-old Afro-Brazilian man presented with swelling and pain on the left side of the mandible in the region of the third molar (tooth 38). Radiography showed a poorly delimited intraosseous lesion with radiolucent and radiopaque areas. The cytological aspects were consistent with the diagnosis of osteosarcoma, which was confirmed by biopsy. Conclusion. Imprint cytology was found to be a reliable, rapid and easy complementary examination. An early diagnosis of osteosarcoma of the jaw is fundamental to the early determination of an adequate treatment. © 2009 Cabral et al; licensee BioMed Central Ltd.
Resumo:
Geopropolis is produced by indigenous stingless bees from the resinous material of plants, adding soil or clay. Its biological properties have not been investigated, such as propolis, and herein its cytotoxic action on canine osteosarcoma (OSA) cells was evaluated. OSA is a primary bone neoplasm diagnosed in dogs being an excellent model in vivo to study human OSA. spOS-2 primary cultures were isolated from the tumor of a dog with osteosarcoma and incubated with geopropolis, 70% ethanol (geopropolis solvent), and carboplatin after 6, 24, 48, and 72 hours. Cell viability was analyzed by the crystal violet method. Geopropolis was efficient against canine OSA cells in a dose- and time-dependent way, leading to a distinct morphology compared to control. Geopropolis cytotoxic action was exclusively due to its constituents since 70% ethanol (its solvent) had no effect on cell viability. Carboplatin had no effect on OSA cells. Geopropolis exerted a cytotoxic effect on canine osteosarcoma, and its introduction as a possible therapeutic agent in vivo could be investigated, providing a new contribution to OSA treatment. © 2013 Naiara Costa Cinegaglia et al.
Resumo:
Osteosarcoma (OSA) is a primary bone neoplasm frequently diagnosed in dogs. The biology of OSA in pet dogs is identical to that of pediatric patients, and it has been considered an excellent model in vivo to study human OSA. Since the individual response to chemotherapy is unpredictable and considering that propolis is a natural product with several biological properties, this work evaluated the cytotoxic action of propolis on canine OSA cells. The primary cell culture of canine OSA was obtained from the tumor of a dog with OSA. Cell viability was assessed after incubation with propolis, 70% ethanol (propolis solvent), and carboplatin after 6, 24, 48, and 72 h. Cell viability was analyzed by the crystal violet method. Data showed that canine OSA cells were sensitive to propolis in a dose- and time-dependent manner and had a distinct morphology compared to control. Its solvent (70% ethanol) had no effect on cell viability, suggesting that the cytotoxic action was exclusively due to propolis. Our propolis sample exerted a cytotoxic effect on canine OSA cells, and its introduction as a possible therapeutic agent in vivo could be investigated, providing a new contribution to OSA treatment. Copyright © 2012 John Wiley & Sons, Ltd.