928 resultados para Nonlinear constrained optimization problems
Resumo:
Otto-von-Guericke-Universität Magdeburg, Fakultät für Mathematik, Kumulative Habilitation, 2016
Resumo:
In real optimization problems, usually the analytical expression of the objective function is not known, nor its derivatives, or they are complex. In these cases it becomes essential to use optimization methods where the calculation of the derivatives, or the verification of their existence, is not necessary: the Direct Search Methods or Derivative-free Methods are one solution. When the problem has constraints, penalty functions are often used. Unfortunately the choice of the penalty parameters is, frequently, very difficult, because most strategies for choosing it are heuristics strategies. As an alternative to penalty function appeared the filter methods. A filter algorithm introduces a function that aggregates the constrained violations and constructs a biobjective problem. In this problem the step is accepted if it either reduces the objective function or the constrained violation. This implies that the filter methods are less parameter dependent than a penalty function. In this work, we present a new direct search method, based on simplex methods, for general constrained optimization that combines the features of the simplex method and filter methods. This method does not compute or approximate any derivatives, penalty constants or Lagrange multipliers. The basic idea of simplex filter algorithm is to construct an initial simplex and use the simplex to drive the search. We illustrate the behavior of our algorithm through some examples. The proposed methods were implemented in Java.
Design and analysis of an efficient neural network model for solving nonlinear optimization problems
Resumo:
This paper presents an efficient approach based on a recurrent neural network for solving constrained nonlinear optimization. More specifically, a modified Hopfield network is developed, and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the convergence of the network to the equilibrium points that represent an optimal feasible solution. The main advantage of the developed network is that it handles optimization and constraint terms in different stages with no interference from each other. Moreover, the proposed approach does not require specification for penalty and weighting parameters for its initialization. A study of the modified Hopfield model is also developed to analyse its stability and convergence. Simulation results are provided to demonstrate the performance of the proposed neural network.
Resumo:
Previously we have presented a model for generating human-like arm and hand movements on an unimanual anthropomorphic robot involved in human-robot collaboration tasks. The present paper aims to extend our model in order to address the generation of human-like bimanual movement sequences which are challenged by scenarios cluttered with obstacles. Movement planning involves large scale nonlinear constrained optimization problems which are solved using the IPOPT solver. Simulation studies show that the model generates feasible and realistic hand trajectories for action sequences involving the two hands. The computational costs involved in the planning allow for real-time human robot-interaction. A qualitative analysis reveals that the movements of the robot exhibit basic characteristics of human movements.
Resumo:
Previously we have presented a model for generating human-like arm and hand movements on an unimanual anthropomorphic robot involved in human-robot collaboration tasks. The present paper aims to extend our model in order to address the generation of human-like bimanual movement sequences which are challenged by scenarios cluttered with obstacles. Movement planning involves large scale nonlinear constrained optimization problems which are solved using the IPOPT solver. Simulation studies show that the model generates feasible and realistic hand trajectories for action sequences involving the two hands. The computational costs involved in the planning allow for real-time human robot-interaction. A qualitative analysis reveals that the movements of the robot exhibit basic characteristics of human movements.
Resumo:
A new iterative algorithm based on the inexact-restoration (IR) approach combined with the filter strategy to solve nonlinear constrained optimization problems is presented. The high level algorithm is suggested by Gonzaga et al. (SIAM J. Optim. 14:646–669, 2003) but not yet implement—the internal algorithms are not proposed. The filter, a new concept introduced by Fletcher and Leyffer (Math. Program. Ser. A 91:239–269, 2002), replaces the merit function avoiding the penalty parameter estimation and the difficulties related to the nondifferentiability. In the IR approach two independent phases are performed in each iteration, the feasibility and the optimality phases. The line search filter is combined with the first one phase to generate a “more feasible” point, and then it is used in the optimality phase to reach an “optimal” point. Numerical experiences with a collection of AMPL problems and a performance comparison with IPOPT are provided.
Resumo:
This article continues the investigation of stationarity and regularity properties of infinite collections of sets in a Banach space started in Kruger and López (J. Optim. Theory Appl. 154(2), 2012), and is mainly focused on the application of the stationarity criteria to infinitely constrained optimization problems. We consider several settings of optimization problems which involve (explicitly or implicitly) infinite collections of sets and deduce for them necessary conditions characterizing stationarity in terms of dual space elements—normals and/or subdifferentials.
Resumo:
The purpose of this work is to present an algorithm to solve nonlinear constrained optimization problems, using the filter method with the inexact restoration (IR) approach. In the IR approach two independent phases are performed in each iteration—the feasibility and the optimality phases. The first one directs the iterative process into the feasible region, i.e. finds one point with less constraints violation. The optimality phase starts from this point and its goal is to optimize the objective function into the satisfied constraints space. To evaluate the solution approximations in each iteration a scheme based on the filter method is used in both phases of the algorithm. This method replaces the merit functions that are based on penalty schemes, avoiding the related difficulties such as the penalty parameter estimation and the non-differentiability of some of them. The filter method is implemented in the context of the line search globalization technique. A set of more than two hundred AMPL test problems is solved. The algorithm developed is compared with LOQO and NPSOL software packages.
Resumo:
When modeling real-world decision-theoretic planning problems in the Markov Decision Process (MDP) framework, it is often impossible to obtain a completely accurate estimate of transition probabilities. For example, natural uncertainty arises in the transition specification due to elicitation of MOP transition models from an expert or estimation from data, or non-stationary transition distributions arising from insufficient state knowledge. In the interest of obtaining the most robust policy under transition uncertainty, the Markov Decision Process with Imprecise Transition Probabilities (MDP-IPs) has been introduced to model such scenarios. Unfortunately, while various solution algorithms exist for MDP-IPs, they often require external calls to optimization routines and thus can be extremely time-consuming in practice. To address this deficiency, we introduce the factored MDP-IP and propose efficient dynamic programming methods to exploit its structure. Noting that the key computational bottleneck in the solution of factored MDP-IPs is the need to repeatedly solve nonlinear constrained optimization problems, we show how to target approximation techniques to drastically reduce the computational overhead of the nonlinear solver while producing bounded, approximately optimal solutions. Our results show up to two orders of magnitude speedup in comparison to traditional ""flat"" dynamic programming approaches and up to an order of magnitude speedup over the extension of factored MDP approximate value iteration techniques to MDP-IPs while producing the lowest error of any approximation algorithm evaluated. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In this work the multiarea optimal power flow (OPF) problem is decoupled into areas creating a set of regional OPF subproblems. The objective is to solve the optimal dispatch of active and reactive power for a determined area, without interfering in the neighboring areas. The regional OPF subproblems are modeled as a large-scale nonlinear constrained optimization problem, with both continuous and discrete variables. Constraints violated are handled as objective functions of the problem. In this way the original problem is converted to a multiobjective optimization problem, and a specifically-designed multiobjective evolutionary algorithm is proposed for solving the regional OPF subproblems. The proposed approach has been examined and tested on the RTS-96 and IEEE 354-bus test systems. Good quality suboptimal solutions were obtained, proving the effectiveness and robustness of the proposed approach. ©2009 IEEE.
Resumo:
A neural network model for solving constrained nonlinear optimization problems with bounded variables is presented in this paper. More specifically, a modified Hopfield network is developed and its internal parameters are completed using the valid-subspace technique. These parameters guarantee the convergence of the network to the equilibrium points. The network is shown to be completely stable and globally convergent to the solutions of constrained nonlinear optimization problems. A fuzzy logic controller is incorporated in the network to minimize convergence time. Simulation results are presented to validate the proposed approach.
Resumo:
Nonlinear Optimization Problems are usual in many engineering fields. Due to its characteristics the objective function of some problems might not be differentiable or its derivatives have complex expressions. There are even cases where an analytical expression of the objective function might not be possible to determine either due to its complexity or its cost (monetary, computational, time, ...). In these cases Nonlinear Optimization methods must be used. An API, including several methods and algorithms to solve constrained and unconstrained optimization problems was implemented. This API can be accessed not only as traditionally, by installing it on the developer and/or user computer, but it can also be accessed remotely using Web Services. As long as there is a network connection to the server where the API is installed, applications always access to the latest API version. Also an Web-based application, using the proposed API, was developed. This application is to be used by users that do not want to integrate methods in applications, and simply want to have a tool to solve Nonlinear Optimization Problems.
Resumo:
The filter method is a technique for solving nonlinear programming problems. The filter algorithm has two phases in each iteration. The first one reduces a measure of infeasibility, while in the second the objective function value is reduced. In real optimization problems, usually the objective function is not differentiable or its derivatives are unknown. In these cases it becomes essential to use optimization methods where the calculation of the derivatives or the verification of their existence is not necessary: direct search methods or derivative-free methods are examples of such techniques. In this work we present a new direct search method, based on simplex methods, for general constrained optimization that combines the features of simplex and filter methods. This method neither computes nor approximates derivatives, penalty constants or Lagrange multipliers.
Resumo:
At each outer iteration of standard Augmented Lagrangian methods one tries to solve a box-constrained optimization problem with some prescribed tolerance. In the continuous world, using exact arithmetic, this subproblem is always solvable. Therefore, the possibility of finishing the subproblem resolution without satisfying the theoretical stopping conditions is not contemplated in usual convergence theories. However, in practice, one might not be able to solve the subproblem up to the required precision. This may be due to different reasons. One of them is that the presence of an excessively large penalty parameter could impair the performance of the box-constraint optimization solver. In this paper a practical strategy for decreasing the penalty parameter in situations like the one mentioned above is proposed. More generally, the different decisions that may be taken when, in practice, one is not able to solve the Augmented Lagrangian subproblem will be discussed. As a result, an improved Augmented Lagrangian method is presented, which takes into account numerical difficulties in a satisfactory way, preserving suitable convergence theory. Numerical experiments are presented involving all the CUTEr collection test problems.