Stationarity and regularity of infinite collections of sets. Applications to infinitely constrained optimization


Autoria(s): Kruger, Alexander Y.; López Cerdá, Marco A.
Contribuinte(s)

Universidad de Alicante. Departamento de Estadística e Investigación Operativa

Laboratorio de Optimización (LOPT)

Data(s)

11/03/2014

11/03/2014

01/11/2012

Resumo

This article continues the investigation of stationarity and regularity properties of infinite collections of sets in a Banach space started in Kruger and López (J. Optim. Theory Appl. 154(2), 2012), and is mainly focused on the application of the stationarity criteria to infinitely constrained optimization problems. We consider several settings of optimization problems which involve (explicitly or implicitly) infinite collections of sets and deduce for them necessary conditions characterizing stationarity in terms of dual space elements—normals and/or subdifferentials.

The research was partially supported by the Australian Research Council, Project DP110102011 and by the Spanish MTM2008-06695-C03(01).

Identificador

Journal of Optimization Theory and Applications. 2012, 155(2): 390-416. doi:10.1007/s10957-012-0086-6

0022-3239 (Print)

1573-2878 (Online)

http://hdl.handle.net/10045/36008

10.1007/s10957-012-0086-6

Idioma(s)

eng

Publicador

Springer

Relação

http://dx.doi.org/10.1007/s10957-012-0086-6

Direitos

The original publication is available at www.springerlink.com

info:eu-repo/semantics/restrictedAccess

Palavras-Chave #Subdifferential #Normal cone #Optimality #Extremality #Stationarity #Regularity #Extremal principle #Asplund space #Infinitely constrained optimization #Estadística e Investigación Operativa
Tipo

info:eu-repo/semantics/article