980 resultados para Nehemiah 8:1-3
Resumo:
20 x 27 cm
Resumo:
Bifunctional chiral 2-aminobenzimidazole derivatives 1 and 2 catalyze the enantioselective stereodivergent α-chlorination of β-ketoesters and 1,3-diketone derivatives with up to 50% ee using N-chlorosuccinimide (NCS) or 2,3,4,4,5,6-hexachloro-2,5-cyclohexadien-1-one as electrophilic chlorine sources.
Resumo:
The title compound (3) has been synthesized and its presence sought in the urinary metabolites of the brushtail possum. © CSIRO 2001
Resumo:
E-2-chloro-8-methyl-3-[(4'-methoxy-1'-indanoyl)-2'-methyliden]-quinoline (IQ) is a new quinoline derivative which has been reported as a haemoglobin degradation and ß-haematin formation inhibitor. The haemoglobin proteolysis induced by Plasmodium parasites represents a source of amino acids and haeme, leading to oxidative stress in infected cells. In this paper, we evaluated oxidative status in Plasmodium berghei-infected erythrocytes in the presence of IQ using chloroquine (CQ) as a control. After haemolysis, superoxide dismutase (SOD), catalase, glutathione cycle and NADPH + H+-dependent dehydrogenase enzyme activities were investigated. Lipid peroxidation was also assayed to evaluate lipid damage. The results showed that the overall activities of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were significantly diminished by IQ (by 53.5% and 100%, respectively). Glutathione peroxidase activity was also lowered (31%) in conjunction with a higher GSSG/GSH ratio. As a compensatory response, overall SOD activity increased and lipid peroxidation decreased, protecting the cells from the haemolysis caused by the infection. CQ shared most of the effects showed by IQ; however it was able to inhibit the activity of isocitrate dehydrogenase and glutathione-S-transferase. In conclusion, IQ could be a candidate for further studies in malaria research interfering with the oxidative status in Plasmodium berghei infection.
Resumo:
The key role of intrarenal adenosine in mediating the hypoxemic acute renal insufficiency in newborn rabbits has been well demonstrated using the nonspecific adenosine antagonist theophylline. The present study was designed to define the role of adenosine A1 receptors during systemic hypoxemia by using the specific A1-receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). Renal function parameters were assessed in 31 anesthetized and mechanically ventilated newborn rabbits. In normoxia, DPCPX infusion induced a significant increase in diuresis (+44%) and GFR (+19%), despite a significant decrease in renal blood flow (RBF) (-22%) and an increase in renal vascular resistance (RVR) (+37%). In hypoxemic conditions, diuresis (-19%), GFR (-26%), and RBF (-35%) were decreased, whereas RVR increased (+33%). DPCPX administration hindered the hypoxemia-induced decrease in GFR and diuresis. However, RBF was still significantly decreased (-27%), whereas RVR increased (+22%). In all groups, the filtration fraction increased significantly. The overall results support the hypothesis that, in physiologic conditions, intrarenal adenosine plays a key role in regulating glomerular filtration in the neonatal period through preferential A1-mediated afferent vasoconstriction. During a hypoxemic stress, the A1-specific antagonist DPCPX only partially prevented the hypoxemia-induced changes, as illustrated by the elevated RVR and drop in RBF. These findings imply that the contribution of intrarenal adenosine to the acute adverse effects of hypoxemia might not be solely mediated via the A1 receptor.
Resumo:
The [3+4] cycloaddition between furan and the oxyallyl cation generated from 1-bromo-1-phenylpropan-2-one (4), resulted in the formation of 2-phenyl-8-oxabicyclo[3.2.1]oct-6-en-3-one (5) in 30% yield. This compound was further converted into 2-phenyl-6,7-exo-isopropylidenedioxi-8-oxabicyclo[3.2.1]oct-2-ene (13) in 35.4% yield. The selective effect of compound (13) and its isomer 3-phenyl-6,7-exo-isopropylidenedioxi-8-oxabicyclo[3.2.1]oct -2-ene (1a) on the radicle growth of Sorghum bicolor L. (sorghum) and Cucumis sativus L. (cucumber) were evaluated. For both plants, compound 13 showed to be more potent than its isomer 1a.
Resumo:
The alkene 2,4-dimethyl-8-oxabicyclo[3.2.1]-oct-6-en-3-one (3) was converted to 1,3,10-trimethyl-8-oxabicyclo[5.3.0]-dec-3-ene-2,9-dione (7) and 1,3-dimethyl-8-oxabicyclo[5.3.0]-dec-3-ene-2,9-dione (8) with a 55% overall yield in both cases. Lactones (7) and (8) were converted in two steps to 1,3,4-trimethyl-13-methylene-6-oxatricyclo[8.3.0.0(3,7)]-trideca-2,5,12-trione (12) (63%) and 1,3-dimethyl-13-methylene-6-oxatricycle[8.3.0.0(3,7)]-trideca-2,5,12-trione (13) (45% from 8). The effect of lactones (7), (8), (12), (13) and the intermediates (5) and (6), at the concentration of 250 mug mL-1, on the growth of Cucumis sativus L. and Sorghum bicolor L. was evaluated. The best results were observed for lactone (13) that caused 100% inhibition on the root growth of C. sativus and lactone (12) that inhibited 90% of the root growth for S. bicolor.
Resumo:
In this paper we report the synthesis of biologically active compounds through a [3+4] cycloaddition reaction to produce the main frame structure, followed by several conventional transformations. The 1,2alpha,4alpha,5-tetramethyl-8-oxabicyclo[3.2.1]oct-6-en-3-one (11) obtained from a [3+4] cycloaddition reaction was converted into 1,2alpha,4alpha,5-tetramethyl-6,7-exo-isopropylidenedioxi-8 -oxabicyclo[3.2.1]octan-3-one (13) in 46% yield. This was further converted into the alcohols 1,2alpha,4alpha,5-tetramethyl-6,7-exo-isopropylidenedioxi-8-oxabicyclo[3.2.1]octan-3 alpha-ol (14), 1,2alpha,4alpha,5-tetramethyl-6,7-exo-isopropylidenedioxi-8 -oxabicyclo[3.2.1]octan-3beta-ol (15), 1,2alpha,4alpha,5-tetramethyl-3-butyl-6,7-exo-isopropylidenedioxi-8-oxabicyclo[3.2.1]octan-3 alpha-ol (17), 1,2alpha,4alpha,5-tetramethyl-3-hexyl-6,7-exo-isopropylidenedioxi-8-oxabicyclo[3.2.1]octan-3 alpha-ol (18) and 1,2alpha,4alpha,5-tetramethyl-3-decyl-6,7-exo-isopropylidenedioxi-8-oxabicyclo[3.2.1]octan-3 alpha-ol (19). Dehydration of 17, 18 and 19 with thionyl chloride in pyridine resulted in the alkenes 20, 21 and 22 in ca. 82% - 89% yields from starting alcohols. The herbicidal activity of the compounds synthesized was evaluated at a concentration of 100 µg g-1. The most active compound was 21 causing 42,7% inhibition against Cucumis sativus L.
Resumo:
The [4+3] cycloaddition was utilized in order to prepare 8-oxabicyclo[3.2.1]oct-6-en-3-one (1) derivatives. The correspondent acetonide 6 was converted into several alcohols (11-16). Addition of aryllithium reagents to 6 resulted in 3-(2-fluorophenyl)-6,7-exo-isopropylidenedioxy -8-oxabicyclo[3.2.1]octan-3alpha-ol (11, 72%) and 3-(2,4-dimethoxyphenyl)-6,7-exo-isopropylidenedioxy-8-oxabicyclo[3.2.1]octan -3alpha-ol (16, 20%). The 3-butyl-6,7-exo-isopropylidenedioxy-8-oxabicyclo[3.2.1]octan-3 alpha-ol (15, 56%) was obtained through a Grignard reaction. Reduction of 6 resulted in 6,7-exo-isopropylidenedioxy-8-oxabicyclo[3.2.1]octan-3 beta-ol (7, 62%) and 6,7-exo-isopropylidenedioxy-8-oxabicyclo[3.2.1]octan-3 alpha-ol (8, 20%). The alcohols were treated with thionyl chloride in pyridine, and the corresponding alkenes were obtained with 31-80% yield. The effect of these compounds on the development of radicle and aerial parts of Sorghum bicolor was evaluated.
Resumo:
The B3LYP/6-31G (d) density functional theory (DFT) method was used to study molecular geometry, electronic structure, infrared spectrum (IR) and thermodynamic properties. Heat of formation (HOF) and calculated density were estimated to evaluate detonation properties using Kamlet-Jacobs equations. Thermal stability of 3,6,7,8-tetranitro-3,6,7,8-tetraaza-tricyclo [3.1.1.1(2,4)]octane (TTTO) was investigated by calculating bond dissociation energy (BDE) at the unrestricted B3LYP/6-31G(d) level. Results showed the N-NO2 bond is a trigger bond during the thermolysis initiation process. The crystal structure obtained by molecular mechanics (MM) methods belongs to P2(1)/C space group, with cell parameters a = 8.239 Å, b = 8.079 Å, c = 16.860 Å, Z = 4 and r = 1.922 g cm-3. Both detonation velocity of 9.79 km s-1 and detonation pressure of 44.22 GPa performed similarly to CL-20. According to the quantitative standards of energetics and stability, TTTO essentially satisfies this requirement as a high energy density compound (HEDC).
Resumo:
A reação de cicloadição [4+3] entre o furano e o cátion oxialílico, gerado in situ a partir da 2,4-dibromopentan-3-ona, forneceu o 2alfa,4alfa-dimetil-8-oxabiciclo[3.2.1]oct-6-en-3-ona (1). A oxidação catalítica do oxabiciclo 1 com tetróxido de ósmio em presença de peróxido de hidrogênio em excesso levou à formação do acetonídeo 10, a partir do qual foram obtidos os álcoois 2, 11-15, com rendimentos de 23-86%. O tratamento dos álcoois 11-13 com cloreto de tionila, em presença de piridina, resultou nos respectivos alquenos 17 (94%), 18 (89%) e 19 (80%). A atividade herbicida dos compostos foi avaliada sobre o desenvolvimento do sistema radicular de Sorghum bicolor L. e Cucumis sativus L., nas concentrações de 100 e 250 ppm.
Resumo:
We describe herein preliminary studies on the Intramolecular Diels-Alder Furan-Mediated Synthesis of 8-Aryl-3, 4-di-hydroisoquinolin-1(2H)-ones that constitutes a new, formal synthesis of Indeno[1,2,3-ij]isoquinolines.
Resumo:
Geometric, thermodynamic and electronic properties of cluster neutrals NbxOy and cations NbxOy+ (x = 1-3; y = 2-5, 7, 8) have been characterized theoretically. A DFT calculation using a hybrid combination of B3LYP with contracted Huzinaga basis sets. Numerical results of the relative stabilities, ionization potentials and band gaps of different clusters are in agreement with experiment. Analysis of dissociation channels supports the more stable building blocks as formed by NbO2, NbO2+ NbO3 and NbO3+ stoichiometries. The net atomic charges suggest that oxygen donor molecules can interact more favorably on central niobium atoms of cluster cations, while the interaction with oxygen acceptor molecules is more favorable on the terminal oxygen atoms of neutral clusters. A topological analysis of the electron localization function gradient field indicates that the clusters may be described as having a strong ionic interaction between Nb and O atoms. Published by Elsevier B.V. B.V.