990 resultados para Necrotic cell deaths
Resumo:
The characterization of human dendritic cell (DC) subsets is essential for the design of new vaccines. We report the first detailed functional analysis of the human CD141(+) DC subset. CD141(+) DCs are found in human lymph nodes, bone marrow, tonsil, and blood, and the latter proved to be the best source of highly purified cells for functional analysis. They are characterized by high expression of toll-like receptor 3, production of IL-12p70 and IFN-beta, and superior capacity to induce T helper 1 cell responses, when compared with the more commonly studied CD1c(+) DC subset. Polyinosine-polycytidylic acid (poly I:C)-activated CD141(+) DCs have a superior capacity to cross-present soluble protein antigen (Ag) to CD8(+) cytotoxic T lymphocytes than poly I:C-activated CD1c(+) DCs. Importantly, CD141(+) DCs, but not CD1c(+) DCs, were endowed with the capacity to cross-present viral Ag after their uptake of necrotic virus-infected cells. These findings establish the CD141(+) DC subset as an important functionally distinct human DC subtype with characteristics similar to those of the mouse CD8 alpha(+) DC subset. The data demonstrate a role for CD141(+) DCs in the induction of cytotoxic T lymphocyte responses and suggest that they may be the most relevant targets for vaccination against cancers, viruses, and other pathogens.
Resumo:
Leucine zipper/EF hand-containing transmembrane-1 (LETM1) is a mitochondrial inner membrane protein that was first identified in Wolf-Hirschhorn syndrome, and was deleted in nearly all patients with the syndrome. LETM1 encodes for the human homologue of yeast Mdm38p, which is a mitochondria-shaping protein of unclear function. Here, we describe LETM1-mediated regulation of mitochondrial ATP production and biogenesis. We show that LETM1 overexpression can induce necrotic cell death in HeLa cells, in which LETM1 reduces mitochondria) biogenesis and ATP production. LETM1 acts as an anchor protein and associates with mitochondrial ribosome protein L36. Adenovirus-mediated overexpression of LETM1 reduced mitochondrial mass and expression of many mitochondrial proteins. LETM1-mediated inhibition of mitochondrial biogenesis enhanced glycolytic ATP supply and activated protein kinase B activity and cell survival signaling. The expression levels of LETM1 were significantly increased in multiple human cancer tissues compared with normals. These data suggest that LETM1 serves as an anchor protein for complex formation with the mitochondrial ribosome and regulates mitochondrial biogenesis. The increased expression of LETM1 in human cancer suggests that deregulation of LETM1 is a key feature of tumorigenesis. [Cancer Res 2009;69(8):3397-404]
Resumo:
Apoptotic and necrotic cell death are well characterized and are influenced by intracellular ATP levels. Poly(ADP-ribose) polymerase (PARP), a nuclear enzyme activated by DNA strand breaks, physiologically participates in DNA repair. Overactivation of PARP after cellular insults can lead to cell death caused by depletion of the enzyme’s substrate β-nicotinamide adenine dinucleotide and of ATP. In this study, we have differentially elicited apoptosis or necrosis in mouse fibroblasts. Fibroblasts from PARP-deficient (PARP−/−) mice are protected from necrotic cell death and ATP depletion but not from apoptotic death. These findings, together with cell death patterns in PARP−/− animals receiving other types of insults, indicate that PARP activation is an active trigger of necrosis, whereas other mechanisms mediate apoptosis.
Resumo:
The distinction between physiological (apoptotic) and pathological (necrotic) cell deaths reflects mechanistic differences in cellular disintegration and is of functional significance with respect to the outcomes that are triggered by the cell corpses. Mechanistically, apoptotic cells die via an active and ordered pathway; necrotic deaths, conversely, are chaotic and passive. Macrophages and other phagocytic cells recognize and engulf these dead cells. This clearance is believed to reveal an innate immunity, associated with inflammation in cases of pathological but not physiological cell deaths. Using objective and quantitative measures to assess these processes, we find that macrophages bind and engulf native apoptotic and necrotic cells to similar extents and with similar kinetics. However, recognition of these two classes of dying cells occurs via distinct and noncompeting mechanisms. Phosphatidylserine, which is externalized on both apoptotic and necrotic cells, is not a specific ligand for the recognition of either one. The distinct modes of recognition for these different corpses are linked to opposing responses from engulfing macrophages. Necrotic cells, when recognized, enhance proinflammatory responses of activated macrophages, although they are not sufficient to trigger macrophage activation. In marked contrast, apoptotic cells profoundly inhibit phlogistic macrophage responses; this represents a cell-associated, dominant-acting anti-inflammatory signaling activity acquired posttranslationally during the process of physiological cell death.
Resumo:
Options for skin cancer treatment currently include surgery, radiotherapy, topical chemotherapy, cryosurgery, curettage, and electrodes-sication. Although effective, surgery is costly and unsuitable for certain patients. Radiotherapy can leave a poor cosmetic effect, and current chemotherapy is limited by low cure rates and extended treatment schedules. Here, we describe the preclinical activity of a novel topical chemotherapeutic agent for the treatment of skin cancer, 3-ingenyl angelate (PEP005), a hydrophobic diterpene ester isolated from the plant Euphorbia peplus. Three daily topical applications of 42 nmol (18 mug) of PEP005 cured a series of s.c. mouse tumors (B16 melanoma, LK2 UV-induced squamous cell carcinoma, and Lewis lung carcinoma; it = >14 tumors/group) and human tumors (DO4 melanoma, HeLa cervical carcinoma, and PC3 and DU145 prostate carcinoma; it = >4 tumors/group) previously established (5-10 mm(3)) on C57BL/6 or Fox1(nu) mice. The treatment produced a mild, short-term erythema and eschar formation but, ultimately, resulted in excellent skin cosmesis. The LD90 for PEP005 for a panel of tumor cell lines was 180-220 muM. Electron microscopy showed that treatment with PEP005 both ill vitro (230 tot) and ill vivo (42 nmol) rapidly caused swelling of mitochondria and cell death by primary necrosis. Cr-51 release, uptake of propidium iodide, and staining with the mitochondria dye JC1, revealed that PEP005 (230 muM) treatment of tumor cells ill vitro resulted in a rapid plasma membrane perturbation and loss of mitochondrial membrane potential. PEP005 thus emerges as a new topical anti-skin cancer agent that has a novel mode of action involving plasma membrane and mitochondrial disruption and primary necrosis, ultimately resulting in an excellent cosmetic outcome.
Resumo:
Tissue transglutaminase (tTG) is a Ca2+-dependent enzyme which cross-links proteins via e(g-glutamyl)lysine bridges. There is increasing evidence that tTG is involved in wound repair and tissue stabilization, as well as in physiological mechanisms leading to cell death. To investigate the role of this enzyme in tissue wounding leading to loss of Ca2+ homoeostasis, we initially used a model involving electroporation to reproduce cell wounding under controlled conditions. Two cell models were used whereby tTG expression is regulated either by antisense silencing in ECV 304 cells or by using transfected Swiss 3T3 cells in which tTG expression is under the control of the tet regulatory system. Using these cells, loss of Ca2+ homoeostasis following electroporation led to a tTG-dependent formation of highly cross-linked proteinaceous shells from intracellular proteins. Formation of these structures is dependent on elevated intracellular Ca2+, but it is independent of intracellular proteases and is near maximal after only 20min post-wounding. Using labelled primary amines as an indicator of tTG activity within these 'wounded cells', we demonstrate that tTG modifies a wide range of proteins that are present in both the perinuclear and intranuclear spaces. The demonstration of entrapped DNA within these shell structures, which showed limited fragmentation, provides evidence that the high degree of transglutaminase cross-linking results in the prevention of DNA release, which may serve to dampen any subsequent inflammatory response. Comparable observations were shown when monolayers of cells were mechanically wounded by scratching. In this second model of cell wounding, redistribution of tTG activity to the extracellular matrix was also demonstrated, an effect which may serve to stabilize tissues post-trauma, and thus contribute to the maintenance of tissue integrity.
Resumo:
The aim of this study was to evaluate the transdentinal cytotoxicity of experimental adhesive systems (EASs) with different hydrophilicity and dentin saturation solutions on odontoblast-like cells. One hundred 0.4-mm-thick dentin discs were mounted in in vitro pulp chambers and assigned to 10 groups. MDPC-23 cells were seeded onto the pulpal side of the discs, incubated for 48 h. The EASs with increasing hydrophilicity (R1, R2, R3 and R4) were applied to the occlusal side after etching and saturation of etched dentin with water or ethanol. R0 (no adhesive) served as controls. R1 is a non-solvated hydrophobic blend, R2 is similar to a simplified etch-and-rinse adhesive system and R3 and R4 are similar to self-etching adhesives. After 24 h, cell metabolism was evaluated by MTT assay (n = 8 discs) and cell morphology was examined by SEM (n = 2 discs). Type of cell death was identified by flow cytometry and the degree of monomer conversion (%DC) was determined by infrared spectroscopy (FTIR) after 10 s or 20 s of photoactivation. Data were analyzed by the Kruskal-Wallis and Mann-Whitney tests (α = 0.05). Dentin saturation with ethanol resulted in higher necrotic cell death ratios for R2, R3 and R4 compared with water saturation, although R2 and R3 induced higher SDH production. Photoactivation for 20 s significantly improved the %DC of all EASs compared with 10 s. A significant positive correlation was observed between the degree of hydrophilicity and %DC. In conclusion, except for R1, dentin saturation with ethanol increased the cytotoxicity of EASs, as expressed by the induction of necrotic cell death. © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Programmed cell death is characterized by a cascade of tightly controlled events that culminate in the orchestrated death of the cell. In multicellular organisms autophagy and apoptosis are recognized as two principal means by which these genetically determined cell deaths occur. During plant-microbe interactions cell death programs can mediate both resistant and susceptible events. Via oxalic acid (OA), the necrotrophic phytopathogen Sclerotinia sclerotiorum hijacks host pathways and induces cell death in host plant tissue resulting in hallmark apoptotic features in a time and dose dependent manner. OA-deficient mutants are non-pathogenic and trigger a restricted cell death phenotype in the host that unexpectedly exhibits markers associated with the plant hypersensitive response including callose deposition and a pronounced oxidative burst, suggesting the plant can recognize and in this case respond, defensively. The details of this plant directed restrictive cell death associated with OA deficient mutants is the focus of this work. Using a combination of electron and fluorescence microscopy, chemical effectors and reverse genetics, we show that this restricted cell death is autophagic. Inhibition of autophagy rescued the non-pathogenic mutant phenotype. These findings indicate that autophagy is a defense response in this necrotrophic fungus/plant interaction and suggest a novel function associated with OA; namely, the suppression of autophagy. These data suggest that not all cell deaths are equivalent, and though programmed cell death occurs in both situations, the outcome is predicated on who is in control of the cell death machinery. Based on our data, we suggest that it is not cell death per se that dictates the outcome of certain plant-microbe interactions, but the manner by which cell death occurs that is crucial.
Resumo:
Neuroblastoma is the most common cancer in infants and fourth most common cancer in children. Despite recent advances in cancer treatments, the prognosis of stage-IV neuroblastoma patients continues to be dismal which warrant new pharmacotherapy. A novel tetracyclic condensed quinoline compound, 8-methoxypyrimido 4 `,5 `: 4,5] thieno(2,3-b) quinoline-4(3H)-one (MPTQ) is a structural analogue of an anticancer drug ellipticine and has been reported to posses anticancer property. Study on MPTQ on neuroblastoma cells is very limited and mechanisms related to its cytotoxicity on neuroblastoma cells are completely unknown. Here, we evaluated the anticancer property of MPTQ on mouse neuro 2a and human SH-SY5Y neuroblastoma cells and investigated the mechanisms underlying MPTQ-mediated neuro 2a cell death. MPTQ-mediated neuro 2a and SH-SY5Y cell deaths were found to be dose and time dependent. Moreover, MPTQ induced cell death reached approximately 99.8% and 90% in neuro 2a and SH-SY5Y cells respectively. Nuclear oligonucleosomal DNA fragmentation and Terminal dUTP Nick End Labelling assays indicated MPTQ-mediated neuro 2a cell death involved apoptosis. MPTQ-mediated apoptosis is associated with increased phosphorylation of p53 at Ser15 and Ser20 which correlates with the hyperphosphorylation of Ataxia-Telangiectasia mutated protein (ATM). Immunocytochemical analysis demonstrated the increased level of Bax protein in MPTQ treated neuro 2a cells. MPTQ-mediated apoptosis is also associated with increased activation of caspase-9, -3 and -7 but not caspase-2 and -8. Furthermore, increased level of caspase-3 and cleaved Poly ( ADP Ribose) polymerase were observed in the nucleus of MPTQ treated neuro 2a cells, suggesting the involvement of caspase-dependent intrinsic but not extrinsic apoptotic pathway. Increased nuclear translocation of apoptosis inducing factor suggests additional involvement of caspase-independent apoptosis pathway in MPTQ treated neuro 2a cells. Collectively, MPTQ-induced neuro 2a cell death is mediated by ATM and p53 activation, and Bax-mediated activation of caspase-dependent and caspase-independent mitochondrial apoptosis pathways.
Resumo:
Gomesin is an antimicrobial peptide isolated from hemocytes of a common Brazilian tarantula spider named Acanthoscurriagomesiana. This peptide exerts antitumor activity in vitro and in vivo by an unknown mechanism. In this study, the cytotoxic mechanism of gomesin in human neuroblastoma SH-SY5Y and rat pheochromocytoma PC12 cells was investigated. Gomesin induced necrotic cell death and was cytotoxic to SH-SY5Y and PC12 cells. The peptide evoked a rapid and transient elevation of intracellular calcium levels in Fluo-4-AM loaded PC12 cells, which was inhibited by nimodipine, an L-type calcium channel blocker. Preincubation with nimodipine also inhibited cell death induced by gomesin in SH-SY5Y and PC12 cells. Gomesin-induced cell death was prevented by the pretreatment with MAPK/ERK, PKC or PI3K inhibitors, but not with PKA inhibitor. In addition, gomesin generated reactive oxygen species (ROS) in SH-SY5Y cells, which were blocked with nimodipine and MAPK/ERK, PKC or PI3K inhibitors. Taken together, these results suggest that gomesin could be a useful anticancer agent, which mechanism of cytotoxicity implicates calcium entry through L-type calcium channels, activation of MAPK/ERK, PKC and PI3K signaling as well as the generation of reactive oxygen species. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
To evaluate the cytotoxicity of PDT (photodynamic therapy) with Photogem (R) associated to blue LED (light-emitting diode) on L929 and MDPC-23 cell cultures, 30000 cells/cm(2) were seeded in 24-well plates for 48 h, incubated with Photogem (R) (10, 25 or 50 mg/l) and irradiated with an LED source (460 +/- 3 nm; 22 mW/cm(2)) at two energy densities (25.5 or 37.5 J/cm(2)). Cell metabolism was evaluated by the MTT (methyltetrazolium) assay (Dunnet`s post hoc tests) and cell morphology by SEM (scanning electron microscopy). Flow cytometry analysed the type of PDT-induced cell death as well and estimated intracellular production of ROS (reactive oxygen species). There was a statistically significant decrease of mitochondrial activity (90% to 97%) for all Photogem (R) concentrations associated to blue LED, regardless of irradiation time. It was also demonstrated that the mitochondrial activity was not recovered after 12 or 24 h, characterizing irreversible cell damage. PDT-treated cells presented an altered morphology with ill-defined limits. In both cell lines, there was a predominance of necrotic cell death and the presence of Photogem (R) or irradiation increased the intracellular levels of ROS. PDT caused severe toxic effects in normal cell culture, characterized by the reduction of the mitochondrial activity, morphological alterations and induction of necrotic cell death.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A series of meso-substituted tetra-cationic porphyrins, which have methyl and octyl substituents, was studied in order to understand the effect of zinc chelation and photosensitizer subcellular localization in the mechanism of cell death. Zinc chelation does not change the photophysical properties of the photosensitizers (all molecules studied are type II photosensitizers) but affects considerably the interaction of the porphyrins with membranes, reducing mitochondrial accumulation. The total amount of intracellular reactive species induced by treating cells with photosensitizer and light is similar for zinc-chelated and free-base porphyrins that have the same alkyl substituent. Zinc-chelated porphyrins, which are poorly accumulated in mitochondria, show higher efficiency of cell death with features of apoptosis (higher MTT response compared with trypan blue staining, specific acridine orange/ethidium bromide staining, loss of mitochondrial transmembrane potential, stronger cytochrome c release and larger sub-G1 cell population), whereas nonchelated porphyrins, which are considerably more concentrated in mitochondria, triggered mainly necrotic cell death. We hypothesized that zinc-chelation protects the photoinduced properties of the porphyrins in the mitochondrial environment.
Resumo:
Recognition of drugs by immune cells is usually explained by the hapten model, which states that endogenous metabolites bind irreversibly to protein to stimulate immune cells. Synthetic metabolites interact directly with protein-generating antigenic determinants for T cells; however, experimental evidence relating intracellular metabolism in immune cells and the generation of physiologically relevant Ags to functional immune responses is lacking. The aim of this study was to develop an integrated approach using animal and human experimental systems to characterize sulfamethoxazole (SMX) metabolism-derived antigenic protein adduct formation in immune cells and define the relationship among adduct formation, cell death, costimulatory signaling, and stimulation of a T cell response. Formation of SMX-derived adducts in APCs was dose and time dependent, detectable at nontoxic concentrations, and dependent on drug-metabolizing enzyme activity. Adduct formation above a threshold induced necrotic cell death, dendritic cell costimulatory molecule expression, and cytokine secretion. APCs cultured with SMX for 16 h, the time needed for drug metabolism, stimulated T cells from sensitized mice and lymphocytes and T cell clones from allergic patients. Enzyme inhibition decreased SMX-derived protein adduct formation and the T cell response. Dendritic cells cultured with SMX and adoptively transferred to recipient mice initiated an immune response; however, T cells were stimulated with adducts derived from SMX metabolism in APCs, not the parent drug. This study shows that APCs metabolize SMX; subsequent protein binding generates a functional T cell Ag. Adduct formation above a threshold stimulates cell death, which provides a maturation signal for dendritic cells.
Resumo:
The most common form of neutrophil death, under both physiological and inflammatory conditions, is apoptosis. In this study, we report a novel form of programmed necrotic cell death, associated with cytoplasmic organelle fusion events, that occurs in neutrophils exposed to GM-CSF and other inflammatory cytokines upon ligation of CD44. Strikingly, this type of neutrophil death requires PI3K activation, a signaling event usually involved in cellular survival pathways. In the death pathway reported in this study, PI3K is required for the generation of reactive oxygen species, which somehow trigger the generation of large cytoplasmic vacuoles, generated by the fusion of CD44-containing endosomes with autophagosomes and secondary, but not primary, granules. Neutrophils demonstrating vacuolization undergo rapid cell death that depends on receptor-interacting protein 1 kinase activity and papain family protease(s), but not caspases, that are most likely activated and released, respectively, during or as a consequence of organelle fusion. Vacuolized neutrophils are present in infectious and autoimmune diseases under in vivo conditions. Moreover, isolated neutrophils from such patients are highly sensitive toward CD44-mediated PI3K activation, reactive oxygen species production, and cell death, suggesting that the newly described autophagy-related form of programmed neutrophil necrosis plays an important role in inflammatory responses.