582 resultados para Nanoporous Carbons


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanoporous carbon (NPC) materials with high specific surface area have attracted considerable attention for electrochemical energy storage applications. In the present work, we have designed novel symmetric supercapacitors based on NPC by direct carbonization of Zn-based metal-organic frameworks (MOFs) without using an additional precursor. By controlling the reaction conditions in the present study, we synthesized NPC with two different particle sizes. The effects of particle size and mass loadings on supercapacitor performance have been carefully evaluated. Our NPC materials exhibit excellent electrochemical performance with a maximum specific capacitance of 251 F g-1 in 1 M H2SO4 electrolyte. The symmetric supercapacitor studies show that these efficient electrodes have good capacitance, high stability, and good rate capability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple methodology has been developed for the synthesis of functional nanoporous carbon (NPC) materials using a metal-organic framework (IRMOF-3) that can act as a template for external carbon precursor (viz, sucrose) and also a self-sacrificing carbon source. The resultant graphitic NPC samples (abbreviated as NPC-0, NPC-150, NPC-300, NPC-500 and NPC-1000 based on sucrose loading) obtained through loading different amounts of sucrose exhibit tunable textural parameters. Among these, NPC-300 shows very high surface area (BET approximate to 3119 m(2)/g, Langmuir approximate to 4031 m(2)/g) with a large pore volume of 1.93 cm(3)/g. High degree of porosity coupled with polar surface functional groups, make NPC-300 remarkable candidate for the uptake of H-2 (2.54 wt% at 1 bar, and 5.1 wt% at 50 bar, 77 K) and CO2 (64 wt% at 1 bar, 195 K and 16.9 wt% at 30 bar, 298 K). As a working electrode in a supercapacitor cell, NPC-300 shows excellent reversible charge storage thus, demonstrating multifunctional usage of the carbon materials. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reactions of surface functional groups have an important role in controlling conversion of char nitrogen to NOx during coal combustion. This study involved an investigation of the thermal stability and reactions of nitrogen surface functional groups in nanoporous carbons. Four suites of carbons, which were used as models for coal chars, were prepared with a wide range of nitrogen and oxygen contents and types of functional groups. The porous structures of the carbons were characterized by gas adsorption methods while chemical analysis, X-ray photoelectron spectroscopy, and X-ray near edge structure spectroscopy were used to characterize the surface functional groups. Temperature programmed desorption and temperature programmed reduction methods were used to study the reactivity of the surface functional groups during heat treatment under inert and reducing conditions. Heat treatment studies show that the order of stability of the functional groups is quaternary nitrogen > pyridinic > pyrrolic > pyridine N-oxide. Pyridine N-oxide surface groups desorb NO and form N-2 via surface reactions at low temperature. Pyrrolic and pyridinic functional groups decompose and react with surface species to give NH3, HCN, and N-2 as desorption products, but most pyrrolic groups are preferentially converted to pyridinic and quaternary nitrogen. The main desorption product is N-2. Approximately 15-40 wt % of the original nitrogen was retained in the carbons mainly as quaternary nitrogen after heat treatment to 1673 K. The results are discussed in terms of decomposition ranges for surface functional groups and reaction mechanisms of surface species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de doutoramento, Química (Química Tecnológica), Universidade de Lisboa, Faculdade de Ciências, 2016

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Herein, we explore the immobilization of nickel on various carbon supports and their application as electrocatalysts for the oxidation of propargyl alcohol in alkaline medium. In comparison with massive and nanoparticulated nickel electrode systems, Ni-doped nanoporous carbons provided similar propargyl alcohol conversions for very low metallic contents. Nanoparticulated Ni on various carbon supports gave rise to the highest electrocatalytic activity in terms of product selectivity, with a clear dependence on Ni content. The results point to the importance of controlling the dispersion of the Ni phase within the carbon matrix for a full exploitation of the electroactive area of the metal. Additionally, a change in the mechanism of the propargyl alcohol electrooxidation was noted, which seems to be related to the physicochemical properties of the carbon support as well. Thus, the stereoselectivity of the electrooxidative reaction can be controlled by the active nickel content immobilized on the anode, with a preferential oxidation to (Z)-3-(2-propynoxy)-2-propenoic acid with high Ni-loading, and to propiolic acid with low loading of active Ni sites. Moreover, the formation of (E)-3-(2-propynoxy)-2-propenoic acid was discriminatory irrespective of the experimental conditions and Ni loadings on the carbon matrixes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In situ Raman spectroscopy was exploited to analyze the interaction between carbon and hydrogen during electrochemical hydrogen storage at cathodic conditions. Two different activated carbons were used and characterized by different electrochemical techniques in two electrolytes (6 M KOH and 0.5 M Na2SO4). The in situ Raman spectra collected showed that, in addition to the D and G bands associated to the graphitic carbons, two bands appear simultaneously at about 1110 and 1500 cm−1 under cathodic conditions, and then they disappear when the potential increases to more positive values. This indicates that carbon–hydrogen bonds are formed reversibly in both electrolytes during cathodic conditions. Comparing the two activated carbons, it was confirmed that, in both electrolytes, the hydrogenation of carbon atoms is produced more easily for the sample with lower amount of surface oxygen groups. In KOH medium, for the two samples, the formation of carbon–hydrogen bonds proceeds at more positive potential with respect to the thermodynamic potential value for hydrogen evolution. Furthermore, changes in the shape of the D band (due to an intensity increase of the D1 band) during the formation of carbon–hydrogen bonds suggest that hydrogenation of the carbon atoms increases the number of edge planes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hitherto, adsorption has been traditionally used to study only the porous structure in disordered materials, while the structure of the solid phase skeleton has been probed by crystallographic methods such as X-ray diffraction. Here we show that for carbons density functional theory, suitably adapted to consider heterogeneity of the pore walls, can be reliably used to probe features of the solid structure hitherto accessibly only approximately even by crystallographic methods. We investigate a range of carbons and determine pore wall thickness distributions using argon adsorption, with results corroborated by X-ray diffraction.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The change in the carbonaceous skeleton of nanoporous carbons during their activation has received limited attention, unlike its counterpart process in the presence of an inert atmosphere. Here we adopt a multi-method approach to elucidate this change in a poly(furfuryl alcohol)-derived carbon activated using cyclic application of oxygen saturation at 250 °C before its removal (with carbon) at 800 °C in argon. The methods used include helium pycnometry, synchrotron-based X-ray diffraction (XRD) and associated radial distribution function (RDF) analysis, transmission electron microscopy (TEM) and, uniquely, electron energy-loss spectroscopy spectrum-imaging (EELS-SI), electron nanodiffraction and fluctuation electron microscopy (FEM). Helium pycnometry indicates the solid skeleton of the carbon densifies during activation from 78% to 93% of graphite. RDF analysis, EELS-SI, and FEM all suggest this densification comes through an in-plane growth of sp2 carbon out to the medium range without commensurate increase in order normal to the plane. This process could be termed ‘graphenization’. The exact way in which this process occurs is not clear, but TEM images of the carbon before and after activation suggest it may come through removal of the more reactive carbon, breaking constraining cross-links and creating space that allows the remaining carbon material to migrate in an annealing-like process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have studied the synergetic effect of confinement (carbon nanopore size) and surface chemistry (the number of carbonyl groups) on CO2 capture from its mixtures with CH4 at typical operating conditions for industrial adsorptive separation (298 K and compressed CO2CH4 mixtures). Although both confinement and surface oxidation have an impact on the efficiency of CO2/CH4 adsorptive separation at thermodynamics equilibrium, we show that surface functionalization is the most important factor in designing an efficient adsorbent for CO2 capture. Systematic Monte Carlo simulations revealed that adsorption of CH4 either pure or mixed with CO2 on oxidized nanoporous carbons is only slightly increased by the presence of functional groups (surface dipoles). In contrast, adsorption of CO2 is very sensitive to the number of carbonyl groups, which can be examined by a strong electric quadrupolar moment of CO2. Interestingly, the adsorbed amount of CH4 is strongly affected by the presence of the co-adsorbed CO2. In contrast, the CO2 uptake does not depend on the molar ratio of CH4 in the bulk mixture. The optimal carbonaceous porous adsorbent used for CO2 capture near ambient conditions should consist of narrow carbon nanopores with oxidized pore walls. Furthermore, the equilibrium separation factor was the greatest for CO2/CH4 mixtures with a low CO2 concentration. The maximum equilibrium separation factor of CO2 over CH4 of ∼18–20 is theoretically predicted for strongly oxidized nanoporous carbons. Our findings call for a review of the standard uncharged model of carbonaceous materials used for the modeling of the adsorption separation processes of gas mixtures containing CO2 (and other molecules with strong electric quadrupolar moment or dipole moment).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present results of the reconstruction of a saccharose-based activated carbon (CS1000a) using hybrid reverse Monte Carlo (HRMC) simulation, recently proposed by Opletal et al. [1]. Interaction between carbon atoms in the simulation is modeled by an environment dependent interaction potential (EDIP) [2,3]. The reconstructed structure shows predominance of sp(2) over sp bonding, while a significant proportion of sp(3) hybrid bonding is also observed. We also calculated a ring distribution and geometrical pore size distribution of the model developed. The latter is compared with that obtained from argon adsorption at 87 K using our recently proposed characterization procedure [4], the finite wall thickness (FWT) model. Further, we determine self-diffusivities of argon and nitrogen in the constructed carbon as functions of loading. It is found that while there is a maximum in the diffusivity with respect to loading, as previously observed by Pikunic et al. [5], diffusivities in the present work are 10 times larger than those obtained in the prior work, consistent with the larger pore size as well as higher porosity of the activated saccharose carbon studied here.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

There is considerable interest in hydrogen adsorption on carbon nanotubes and porous carbons as a method of storage for transport and related energy applications. This investigation has involved a systematic investigation of the role of functional groups and porous structure characteristics in determining the hydrogen adsorption characteristics of porous carbons. Suites of carbons were prepared with a wide range of nitrogen and oxygen contents and types of functional groups to investigate their effect on hydrogen adsorption. The porous structures of the carbons were characterized by nitrogen (77 K) and carbon dioxide (273 K) adsorption methods. Hydrogen adsorption isotherms were studied at 77 K and pressure up to 100 kPa. All the isotherms were Type I in the IUPAC classification scheme. Hydrogen isobars indicated that the adsorption of hydrogen is very temperature dependent with little or no hydrogen adsorption above 195 K. The isosteric enthalpies of adsorption at zero surface coverage were obtained using a virial equation, while the values at various surface coverages were obtained from the van't Hoff isochore. The values were in the range 3.9-5.2 kJ mol(-1) for the carbons studied. The thermodynamics of the adsorption process are discussed in relation to temperature limitations for hydrogen storage applications. The maximum amounts of hydrogen adsorbed correlated with the micropore volume obtained from extrapolation of the Dubinin-Radushkevich equation for carbon dioxide adsorption. Functional groups have a small detrimental effect on hydrogen adsorption, and this is related to decreased adsorbate-adsorbent and increased adsorbate-adsorbate interactions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study, the adsorption characteristics of two series of oxygen and nitrogen functionalized activated carbons were investigated. These series were a low nitrogen content(similar to 1 wt % daf) carbon series derived from coconut shell and a high nitrogen content (similar to 8 wt % daf) carbon series derived from polyacrylonitrile. In both series, the oxygen contents were varied over the range similar to 2-22 wt % daf. The porous structures of the functionalized activated carbons were characterized using N-2 (77 K) and CO2 (273 K) adsorption. Only minor changes in the porous structure were observed in both series. This allowed the effect of changes in functional group concentrations on metal ion adsorption to be studied without major influences due to differences in porous structure characteristics. The surface group characteristics were examined by Fourier transform infrared (FTIR) spectroscopy, acid/base titrations, and measurement of the point of zero charge (pH(PZC)). The adsorption of aqueous metal ion species, M2+(aq), on acidic oxygen functional group sites mainly involves an ion exchange mechanism. The ratios of protons displaced to the amount of M2+(aq) metal species adsorbed have a linear relationship for the carbons with pH(PZC) <= 4.15. Hydrolysis of metal species in solution may affect the adsorption of metal ion species and displacement of protons. In the case of basic carbons, both protons and metal ions are adsorbed on the carbons. The complex nature of competitive adsorption between the proton and metal ion species and the amphoteric character of carbon surfaces are discussed in relation to the mechanism of adsorption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Activated carbons with high metal content have been prepared by the pyrolysis of ethylene tar with dissolved metal acetylacetonates (Ti, V, Fe, Co, Ni and Cu) and subsequent activation with KOH of the pitch obtained in pyrolysis. These metal compounds decompose during the pyrolysis of ethylene tar yielding metal nanoparticles formed by metal and/or oxide which are homogeneously distributed in the pitch and remain in the activated carbon, so that the concentration of metal is, in most cases, 4–5 times higher than in the pristine ethylene tar. Since KOH is an effective activating agent, all activated carbons combine a high porosity development with a high metal content. In some of the carbons, such as P2FeA (3.3% Fe, pore volume 1.84 cm3/g, BET surface area 3270 m2/g), there is even an increase in the pore volume when compared to the activated carbon prepared in the same way without metal, in spite of the fact that the metal increases the weight of carbon without contributing to the adsorptive capacity. It seems that iron, on the one hand modifies the pyrolysis to give a pitch with larger mesophase content and on the other hand it locally catalyzes carbon gasification with the CO2 produced along the synthesis of the carbon. In addition to its influence on activation, iron promotes the formation of graphitic carbon fibers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Grand Canonical Monte Carlo simulation (GCMC) method is used to study the effects of pore constriction on the adsorption of argon at 87.3 K in carbon slit pores of infinite and finite lengths. It is shown that the pore constriction affects the pattern of adsorption isotherm. First, the isotherm of the composite pore is greater than that of the uniform pore having the same width as the larger cavity of the composite pore. Secondly, the hysteresis loop of the composite pore is smaller than and falls between those of uniform pores. Two types of hysteresis loops have been observed, irrespective of the absence or presence of constriction and their presence depend on pore width. One hysteresis loop is associated with the compression of adsorbed particles and this phenomenon occurs after pore has been filled with particles. The second hysteresis loop is the classical condensation-evaporation loop. The hysteresis loop of a composite pore depends on the sizes of the larger cavity and the constriction. Generally, it is found that the pore blocking effect is not manifested in composite slit pores, and this result does not support the traditional irkbottle pore hypothesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ordered nanoporous carbon (ONC) was comprehensively tested for the first time as electrode material in lithium-ion battery. Structure characterization shows the order nanoporous structure and tiny crystallite structure of as-synthesized ONC. The electrochemical properties of this carbon were studied by galvanostatic cycling and cyclic voltammetry. Of special interest is that ONC gave no peak on its positive sweep of the cyclic voltammetry, which was different from other known anode materials. Besides, X-ray photoelectron spectroscopy (XPS) and XRD were also used to investigate the electrochemical characteristics of ONC. (c) 2006 Elsevier Ltd. All rights reserved.