402 resultados para NANOCRYSTALLINE TITANIA


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present work Titania bulk powders and coatings were prepared by subjecting titanium isopropoxide solution to a controlled hydrolysis-condensation process. The powders were characterized using techniques such as FTIR for their chemical interactions, TG-DTA for the thermal decomposition features, XRD for the phase assemblage, BET specific surface area analysis for the textural features. The study discusses the preparation methods and the characterization techniques employed and a detailed discussion on the physico-chemical characterization of the prepared systems. The influence of dopants and leaching on the physico-chemical properties as well as their influence on photo activity is also included. The structural/functional coatings of different Titania compositions includes in this study. Coatings on pre-treated glass surfaces with the best compositions prepared showed 90 % transmittance in the visible region.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present thesis develops from the point of view of titania sol-gel chemistry and an attempt is made to address the modification of the process for better photoactive titania by selective doping and also demonstration of utilization of the process for the preparation of supported membranes and self cleaning films.A general introduction to nanomaterials, nanocrystalline titania and sol-gel chemistry are presented in the first chapter. A brief and updated literature review on sol-gel titania, with special emphasis on catalytic and photocatalytic properties and anatase to rutile transformation are covered. Based on critical assessment of the reported information the present research problem has been defined.The second chapter describes a new aqueous sol-gel method for the preparation of nanocrystalline titania using titanyl sulphate as precursor. This approach is novel since no earlier work has been reported in the same lines proposed here. The sol-gel process has been followed at each step using particle size, zeta potential measurements on the sol and thermal analysis of the resultant gel. The prepared powders were then characterized using X-ray diffraction, FTIR, BET surface area analysis and transmission electron microscopy.The third chapter presents a detailed discussion on the physico-chemical characterization of the aqueous sol-gel derived doped titania. The effect of dopants such as tantalum, gadolinium and ytterbium on the anatase to rutile phase transformation, surface area as well as their influence on photoactivity is also included. The fourth chapter demonstrates application of the aqueous sol-gel method in developing titania coatings on porous alumina substrates for controlling the poresize for use as membrane elements in ultrafiltration. Thin coatings having ~50 nm thickness and transparency of ~90% developed on glass surface were tested successfully for self cleaning applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Titanium dioxide has been extensively used in photocatalysis and dye-sensitized solar cells, where control of the anatase-to-rutile phase transformation may allow the realization of more efficient devices exploiting the synergic effects at anatase/rutile interfaces. Thus, a systematic study showing the proof of concept of a dye-induced morphological transition and an anatase-to-rutile transition based on visible laser (532 nm) and nano/micro patterning of mesoporous anatase (Degussa P25 TiO(2)) films is described for the first time using a confocal Raman microscope. At low laser intensities, only the bleaching of the adsorbed N3 dye was observed. However, high enough temperatures to promote melting/densification processes and create a deep hole at the focus and an extensive phase transformation in the surrounding material were achieved using Is laser pulses of 25-41 mW/cm(2), in resonance with the MLCT band. The dye was shown to play a key role, being responsible for the absorption and efficient conversion of the laser light into heat. As a matter of fact, the dye is photothermally decomposed to amorphous carbon or to gaseous species (CO(x), NO(x), and H(2)O) under a N(2) or O(2) atmosphere, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In hybrid organic solar cells a blocking layer between transparent electrode and nanocrystalline titania particles is essential to prevent short-circuiting and current loss through recombination at the electrode interface. Here the preparation of a uniform hybrid blocking layer which is composed of conducting titania nanoparticles embedded in an insulating polymer derived ceramic is presented. This blocking layer is prepared by sol-gel chemistry where an amphiphilic block copolymer is used as a templating agent. A novel poly(dimethylsiloxane) containing amphiphilic block copolymer poly(ethyleneglycol)methylethermethacrylate-block-poly(dimethylsiloxane)-block-poly(ethyleneglycol)methylethermethacrylate has been synthesized to act as the templating agent. Plasma treatment uncovered titania surface from any polymer. Annealing at 450°C under nitrogen resulted in anatase titania with polymer derived silicon oxycarbide ceramic. Electrical characterization by conductive scanning probe microscopy experiments revealed a percolating titania network separated by an insulating ceramic matrix. Scanning Kelvin probe force microscopy showed predominant presence of titania particles on the surface creating a large surface area for dye absorption. The uniformity of the percolating structures was proven by microbeam grazing incidence small angle x-ray scattering. First applications in hybrid organic solar cells in comparison with conventional titanium dioxide blocking layer containing devices revealed 15 fold increases in corresponding efficiencies. Poly(dimethylsiloxane)-block-poly(ethyleneglycol)methylethermethacrylate and poly(ethyleneoxide)-poly(dimethylsiloxane)methylmethacrylate diblock copolymers were also synthesized. Their titania nanocomposite films were compared with the integrated blocking layer. Liner poly(ethyleneoxide) containing diblock copolymer resulted in highly ordered foam like structures. The effect of heating temperature rise to 600°C and 1000°C on titania morphology was investigated by scanning electron and force microscopy and x-ray scattering. Sol-gel contents, hydrochloric acid, titania precursor and amphiphilic triblock copolymer were altered to see their effect on titania morphology. Increase in block copolymer content resulted in titania particles of diameter 15-20 nm.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Transition metal-loaded (3%) nanocrystalline sulfated titania (ST) powders are prepared using the sol–gel technique. Anatase is found as the active phase in all the samples. Sulfate ion impregnation decreases the crystallite size and stabilizes the anatase phase of TiO2. Acidity of the samples is found to increase by the incorporation of sulfate ion and also by the modification by transition metal ions. All the prepared catalysts are found stable up to 700 °C.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Chromia loaded sulfated titania has been synthesized via sol–gel route with different chromia loadings. These catalysts are characterized using conventional techniques such as XRD analysis, FTIR analysis, surface area and pore volume measurements, EDX, SEM and UV–Vis diffuse reflectance spectral analysis. Acidity is measured using spectrophotometric monitoring of adsorption of perylene, thermogravimetric desorption of 2,6-dimethylpyridine and temperature programmed desorption of ammonia. Activity studies are done in the liquid phase. It has been concluded that Lewis acid sites are responsible for the benzylation of arenes with benzyl chloride.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A porous, high surface area TiO2 with anatase or rutile crystalline domains is advantageous for high efficiency photonic devices. Here, we report a new route to the synthesis of mesoporous titania with full anatase crystalline domains. This route involves the preparation of anatase nanocrystalline seed suspensions as the titania precursor and a block copolymer surfactant, Pluronic P123 as the template for the hydrothermal self-assembly process. A large pore (7 - 8 nm) mesoporous titania with a high surface area of 106 - 150 m(2)/g after calcination at 400degreesC for 4 h in air is achieved. Increasing the hydrothermal temperature decreases the surface area and creates larger pores. Characteristics of the seed precursors as well as the resultant mesoporous titania powder were studied using XRD analysis, N-2-adsorption/desorption analysis, and TEM. We believe these materials will be especially useful for photoelectrochemical solar cell and photocatalysis applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZrO(2)-10, 12 and 14 mol% Sc(2)O(3) nanopowders were prepared by using a nitrate-lysine gel-combustion synthesis. These materials were studied by synchrotron X-ray powder diffraction (SXPD) and Raman spectroscopy after calcination at different temperatures from 650 to 1200 degrees C, which led to samples with different average crystallite sizes, up to about 100 nm. The results from SXPD and Raman analyses indicate that, depending on Sc(2)O(3) content, the metastable t ''-form of the tetragonal phase or the cubic phase are fully retained at room temperature in nanocrystalline powders, provided an average crystallite sizes lower than similar to 30 nm. By contrast, powders with larger average crystallite sizes exhibit the stable rhombohedral, beta and gamma, phases and do not retain or very partially retain the metastable t '' and cubic ones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structure and the local atomic order of a series of nanocrystalline ZrO(2)-CaO solid solutions with varying CaO content were studied by synchrotron radiation X-ray powder diffraction and extended X-ray absorption fine structure (EXAFS) spectroscopy. These samples were synthesized by a pH-controlled nitrate-glycine gel-combustion process. For CaO contents up to 8 mol%, the t' form of the tetragonal phase (c/a > 1) was identified, whereas for 10 and 12 mol% CaO, the t '' form (c/a=1; oxygen anions displaced from their ideal positions in the cubic phase) was detected. Finally, the cubic phase was observed for solid solutions with CaO content of 14 mol% CaO or higher. The t'/t '' and t ''/cubic compositional boundaries were determined to be at 9 (1) and 13 (1) mol% CaO, respectively. The EXAFS study demonstrated that this transition is related to a tetragonal-to-cubic symmetry change of the first oxygen coordination shell around the Zr atoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crystal structure of compositionally homogeneous, nanocrystalline ZrO2-CeO2 solutions was investigated by X-ray powder diffraction as a function of temperature for compositions between 50 and 65 mol % CeO2 center dot ZrO2-50 and 60 mol % CeO2 solid solutions, which exhibit the t'-form of the tetragonal phase at room temperature, transform into the cubic phase in two steps: t'-to-t '' followed by t ''-to-cubic. But the ZrO2-65 mol % CeO2, which exhibits the t ''-form, transforms directly to the cubic phase. The results suggest that t'-to-t '' transition is of first order, but t ''-to-cubic seems to be of second order. (C) 2008 International Centre for Diffraction Data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effects of titanium carbide (TiC) addition on structural and magnetic properties of isotropic (Pr,Nd)-Fe-B nanocrystalline magnetic materials have been investigated. In this work, we investigate the effect of TiC addition on a (Pr,Nd)-poor and B-rich composition, as well as on a B-poor and (Nd, Pr)-rich composition. Rapidly solidified (Pr, Nd)-Fe-B alloys were prepared by melt-spinning. The compositions studied were (Pr(1-x)Nd(x))(4)Fe(78)B(18) (x = 0, 0.5, and 1) with addition of 3 at% TiC. Unlike the (Pr(x)Nd(1-x))(9.5)Fe(84.5)B(6) materials that present excellent values for coercive. field and energy product, the (Pr,Nd)-poor and B-rich composition alloys with TiC addition present lower values. Rietveld analysis of X-ray data and Mossbauer spectroscopy revealed that samples are predominantly composed of Fe(3)B and alpha-Fe. For the RE-rich compositions (Pr(x)Nd(1-x))(9.5)Fe(84.5)B(6) (x = 0.1, 0.25, 0.5, 0.75, and 1) with the addition of 3 at% TiC, the highest coercive field and energy product (8.4 kOe and 14.4 MGOe, respectively) were obtained for the composition Pr(9.5)Fe(84.5)B(6). (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High removal rate (up to 16.6 mm(3)/s per mm) grinding of alumina and alumina-titania was investigated with respect to material removal and basic grinding parameters using a resin-bond 160 mu m grit diamond wheel at the speeds of 40 and 160 m/s, respectively. The results show that the material removal for the single-phase polycrystalline alumina and the two-phase alumina-titania composite revealed identical mechanisms of microfracture and grain dislodgement under the grinding conditioned selected. There were no distinct differences in surface roughness and morphology for both materials ground at either conventional or high speed. An increase in material removal rate did not necessarily worsen the surface toughness for the two materials at both speeds. Also the grinding forces for the two ceramics demonstrated similar characteristics at any grinding speeds and specific removal rates. Both normal and tangential grinding forces and their force ratios at the high speed were lower than those at the conventional speed, regardless of removal rates. An increase in specific removal rate caused more rapid increases in normal and tangential forces obtained at the conventional grinding speed than those at the high speed. Furthermore, it is found that the high speed grinding at all the removal rates exerted a great amount of coolant-induced normal forces in grinding zone, which were 4-6 times higher than the pure normal grinding forces. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 4-carboxyphenyl-appended macrocyclic ligand trans-6,13-dimethyl-6-((4-carboxybenzyl)amino)-1,4,8,11-tetraazacyclotetradecane-6-amine (HL10) has been synthesised and complexed with Co-III. The mononuclear complexes [Co(HL10)(CN)](2+) and [CoL10(OH)](+) have been prepared and the crystal structures of their perchlorate salts are presented, where the ligand is bound in a pentadentate mode in each case while the 4-carboxybenzyl-substituted pendent amine remains free from the metal. The cyano-bridged dinuclear complex [CoL10-mu-NC-Fe(CN)(5)](2-) was also prepared and chemisorbed on titania-coated ITO conducting glass. The adsorbed complex is electrochemically active and cyclic voltammetry of the modified ITO working electrode in both water and MeCN solution was undertaken with simultaneous optical spectroscopy. This experiment demonstrates that reversible electrochemical oxidation of the Fe-II centre is coupled with rapid changes in the optical absorbance of the film.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zirconia (ZrO(2)) is a bioinert, strong, and tough ceramic, while titania (TiO(2)) is bioactive but has poor mechanical properties. It is expected that ZrO(2)-TiO(2) mixed ceramics incorporate the individual properties of both ceramics, so that this material would exhibit better biological properties. Thus, the objective of this study was to compare the biocompatibility properties of ZrO(2)-TiO(2) mixed ceramics. Sintered ceramics pellets, obtained from powders of TiO(2), ZrO(2), and three different ZrO(2)-TiO(2) mixed oxides were used. Roughnesses, X-ray diffraction, microstructure through SEM, hardness, and DRIFT characterizations were performed. For biocompatibility analysis cultured FMM1 fibroblasts were plated on the top of disks and counted in SEM micrographs 1 and 2 days later. Data were compared by ANOVA complemented by Tukey`s test. All samples presented high densities and similar microstructure. The H(2)O content in the mixed ceramics was more evident than in pure ceramics. The number of fibroblasts attached to the disks increased significantly independently of the experimental group. The cell growth on the top of the ZrO(2)-TiO(2) samples was similar and significantly higher than those of TiO(2) and ZrO(2) samples. Our in vitro experiments showed that the ZrO(2)-TiO(2) sintered ceramics are biocompatible allowing faster cell growth than pure oxides ceramics. The improvement of hardness is proportional to the ZrO(2) content. Thus, the ZrO(2)-TiO(2) sintered ceramics could be considered as potential implant material. (C) 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 94B: 305-311, 2010.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examine the instability behavior of nanocrystalline silicon (nc-Si) thin-film transistors (TFTs) in the presence of electrical and optical stress. The change in threshold voltage and sub-threshold slope is more significant under combined bias-and-light stress when compared to bias stress alone. The threshold voltage shift (Delta V-T) after 6 h of bias stress is about 7 times larger in the case with illumination than in the dark. Under bias stress alone, the primary instability mechanism is charge trapping at the semiconductor/insulator interface. In contrast, under combined bias-and-light stress, the prevailing mechanism appears to be the creation of defect states in the channel, and believed to take place in the amorphous phase, where the increase in the electron density induced by electrical bias enhances the non-radiative recombination of photo-excited electron-hole pairs. The results reported here are consistent with observations of photo-induced efficiency degradation in solar cells.