925 resultados para Monopile foundations
Resumo:
Offshore wind turbines impose unique combinations of loads on their foundations. They impose large lateral loads in relation to vertical loading which must be resisted, but are also subject to approximately a million cycles of loading through their design life. As the performance of these systems is dominated by their dynamic response, the stiffness of the foundations becomes critical in design. Conventional design codes which are conservative by virtue of predicting a lower stiffness than might be observed in practice may not be conservative for these problems. By utilizing centrifuge modeling the behaviour of monopile foundations in both sands and clays under cyclic loading can be investigated in order to predict the dynamic behaviour of these systems. © 2010 Taylor & Francis Group, London.
Resumo:
Offshore wind turbines supported on monopile foundations are dynamically sensitive because the overall natural frequencies of these structures are close to the different forcing frequencies imposed upon them. The structures are designed for an intended life of 25 to 30 years, but little is known about their long term behaviour. To study their long term behaviour, a series of laboratory tests were conducted in which a scaled model wind turbine supported on a monopile in kaolin clay was subjected to between 32,000 and 172,000 cycles of horizontal loading and the changes in natural frequency and damping of the model were monitored. The experimental results are presented using a non-dimensional framework based on an interpretation of the governing mechanics. The change in natural frequency was found to be strongly dependent on the shear strain level in the soil next to the pile. Practical guidance for choosing the diameter of monopile is suggested based on element test results using the concept of volumetric threshold shear strain.
Resumo:
With the importance of renewable energy well-established worldwide, and targets of such energy quantified in many cases, there exists a considerable interest in the assessment of wind and wave devices. While the individual components of these devices are often relatively well understood and the aspects of energy generation well researched, there seems to be a gap in the understanding of these devices as a whole and especially in the field of their dynamic responses under operational conditions. The mathematical modelling and estimation of their dynamic responses are more evolved but research directed towards testing of these devices still requires significant attention. Model-free indicators of the dynamic responses of these devices are important since it reflects the as-deployed behaviour of the devices when the exposure conditions are scaled reasonably correctly, along with the structural dimensions. This paper demonstrates how the Hurst exponent of the dynamic responses of a monopile exposed to different exposure conditions in an ocean wave basin can be used as a model-free indicator of various responses. The scaled model is exposed to Froude scaled waves and tested under different exposure conditions. The analysis and interpretation is carried out in a model-free and output-only environment, with only some preliminary ideas regarding the input of the system. The analysis indicates how the Hurst exponent can be an interesting descriptor to compare and contrast various scenarios of dynamic response conditions.
Resumo:
Offshore wind has enormous worldwide potential to generate increasing amounts of clean, renewable energy. Monopile foundations are considered to be viable in supporting larger offshore wind turbines in shallow to medium depth waters. In this paper, the lateral and axial response of monopiles installed in undrained clays of varying shear strength and stiffness is investigated using three-dimensional finite element analysis. A combination of axial and lateral loads expected at an offshore wind farm located in a water depth of 30 m has been used in the analysis. Numerically derived monopile axial capacities will be compared to those calculated using an established method in the literature. In addition, the lateral monopile capacity will be determined at ultimate limit state and compared to that at the serviceability limit state. Through a parametric study, it will be shown that with the exception of extremely high axial loads that border on monopile axial capacities, variation in axial loads does not have a significant effect on the ultimate lateral capacity and lateral displacement of monopiles. © 2013 Indian Geotechnical Society.
Resumo:
Monopile foundations, currently designed using the p-y method, are technically viable in supporting larger offshore wind turbines in waters to a depth of 30 m. The p-y method was developed to better understand the behavior of laterally loaded long slender piles required for the offshore oil and gas installations. The lateral load-deformation behavior of two monopiles, 5 and 7.5 m dia, installed in soft clays of varying undrained shear strength and stiffness, was studied. A combination of axial and lateral loads expected at an offshore wind farm location with a water depth of 30 m was used in the analysis. It was established that the Matlock (1970) p-y curves are too soft and under-estimate the ultimate soil reaction at all depths except at the monopile tip. At the pile tip, the base shear was not accounted for in the p-y curves, hence resulting in the over-estimation of the soil reaction. Consequently, the Matlock (1970) p-y formulation significantly underestimates the monopile ultimate lateral capacity. The use of the Matlock (1970) p-y method would result in over-conservative designs of monopiles for offshore wind turbines. This is an abstract of a paper presented at the Offshore Technology Conference (Houston, TX 5/6-9/2013).
Resumo:
This paper is the result of research whose main objective is to analyse different methods used for the prediction of maximum scour depth and scour extension, and for the design of scour protections in offshore wind farms located in shallow water, using medium and large diameter monopile foundations. Physical agents such as waves, currents and wind play a major role in the design of structures like offshore farms. As a result, the study has highlighted the need for introducing experience backed climate monomials such as the dimensionless wave height parameter (H0) and proposes the use of formulations that can express the extent of scour protections as a function of waves in transitional waters.
Resumo:
Scour compromises the operation of offshore facilities. This article describes the results of an investigation aimed at the analysis of different methods used in the scour protection systems design at offshore wind farms. The study is focused on transitional waters, where monopile foundations present medium or large diameters. Using the experience of offshore wind farms currently installed, a new design formula is proposed. All of this with the aim of improving a preliminary design of scour protection systems considering maritime parameters
Resumo:
Sets out a system of corporate governance regulation, aimed at combining legal and social methods of governing director behaviour and at creating a framework flexible enough to accommodate different business and ethical cultures. Outlines the theoretical basis of corporate governance and the broad responsibilities of directors, and discusses the extent to which they can and should be regulated. Discusses the constitution of a regulatory framework encompassing law, soft law and best practice, and ethics.
Resumo:
This paper examines the development of student functional thinking during a teaching experiment that was conducted in two classrooms with a total of 45 children whose average age was nine years and six months. The teaching comprised four lessons taught by a researcher, with a second researcher and classroom teacher acting as participant observers. These lessons were designed to enable students to build mental representations in order to explore the use of function tables by focusing on the relationship between input and output numbers with the intention of extracting the algebraic nature of the arithmetic involved. All lessons were videotaped. The results indicate that elementary students are not only capable of developing functional thinking but also of communicating their thinking both verbally and symbolically.