987 resultados para Molecular phylogeny
Resumo:
A novel karyotype with 2n = 50, FN = 48, was described for specimens of Thaptomys collected at Una, State of Bahia, Brazil, which are morphologically indistinguishable from Thaptomys nigrita, 2n = 52, FN = 52, found in other localities. It was hence proposed that the 2n = 50 karyotype could belong to a distinct species, cryptic of Thaptomys nigrita, once chromosomal rearrangements observed, along with the geographic distance, might represent a reproductive barrier between both forms. Phylogenetic analyses using maximum parsimony and maximum likelihood based on partial cytochrome b sequences with 1077 bp were performed, attempting to establish the relationships among the individuals with distinct karyotypes along the geographic distribution of the genus; the sample comprised 18 karyotyped specimens of Thaptomys, encompassing 15 haplotypes, from eight different localities of the Atlantic Rainforest. The intra-generic relationships corroborated the distinct diploid numbers, once both phylogenetic reconstructions recovered two monophyletic lineages, a northeastern clade grouping the 2n = 50 and a southeastern clade with three subclades, grouping the 2n = 52 karyotype. The sequence divergence observed between their individuals ranged from 1.9% to 3.5%.
Resumo:
We present a molecular phylogenetic analysis of caenophidian (advanced) snakes using sequences from two mitochondrial genes (12S and 16S rRNA) and one nuclear (c-mos) gene (1681 total base pairs), and with 131 terminal taxa sampled from throughout all major caenophidian lineages but focussing on Neotropical xenodontines. Direct optimization parsimony analysis resulted in a well-resolved phylogenetic tree, which corroborates some clades identified in previous analyses and suggests new hypotheses for the composition and relationships of others. The major salient points of our analysis are: (1) placement of Acrochordus, Xenodermatids, and Pareatids as successive outgroups to all remaining caenophidians (including viperids, elapids, atractaspidids, and all other "colubrid" groups); (2) within the latter group, viperids and homalopsids are sucessive sister clades to all remaining snakes; (3) the following monophyletic clades within crown group caenophidians: Afro-Asian psammophiids (including Mimophis from Madagascar), Elapidae (including hydrophiines but excluding Homoroselaps), Pseudoxyrhophiinae, Colubrinae, Natricinae, Dipsadinae, and Xenodontinae. Homoroselaps is associated with atractaspidids. Our analysis suggests some taxonomic changes within xenodontines, including new taxonomy for Alsophis elegans, Liophis amarali, and further taxonomic changes within Xenodontini and the West Indian radiation of xenodontines. Based on our molecular analysis, we present a revised classification for caenophidians and provide morphological diagnoses for many of the included clades; we also highlight groups where much more work is needed. We name as new two higher taxonomic clades within Caenophidia, one new subfamily within Dipsadidae, and, within Xenodontinae five new tribes, six new genera and two resurrected genera. We synonymize Xenoxybelis and Pseudablabes with Philodryas; Erythrolamprus with Liophis; and Lystrophis and Waglerophis with Xenodon.
Resumo:
Phylogenetic relationships among species of the Myzorhynchella Section of Anopheles (Nyssorhynchus) were investigated using the nuclear ribosomal DNA second internal transcribed spacer (ITS2), the nuclear whitegene and mitochondrial cytochrome oxidase subunit I (COI) regions. The recently described Anopheles pristinus and resurrected Anopheles guarani were also included in the study. Bayesian phylogenetic analyses found Anopheles parvus to be the most distantly related species within the Section, a finding that is consistent with morphology. An. pristinus and An. guarani were clearly resolved from Anopheles antunesi and Anopheles lutzii, respectively. An. lutzii collected in the same mountain range as the type locality were found within a strongly supported clade, whereas individuals from the southern state of Rio Grande do Sul, tentatively identified as An. lutzii based on adult female external morphology, were distinct from An. lutzii, An. antunesi and from each other, and may therefore represent two new sympatric species. A more detailed examination of An. lutzii sensu latoalong its known geographic range is recommended to resolve these anomalous relationships.
Resumo:
Stingless bees exhibit extraordinary variation in nest architecture within and among species. To test for phylogenetic association of behavioral traits for species of the Neotropical stingless bee genus Trigona s.s., a phylogenetic hypothesis was generated by combining sequence data of 24 taxa from one mitochondrial (16S rRNA) and four nuclear gene fragments (long-wavelength rhodopsin copy 1 (opsin), elongation factor-1 alpha copy F2, arginine kinase, and 28S rRNA). Fifteen characteristics of the nest architecture were coded and tested for phylogenetic association. Several characters have significant phylogenetic signal, including type of nesting substrate, nest construction material, and hemipterophily, the tending of hemipteroid insects in exchange for sugar excretions. Phylogenetic independent habits encountered in Trigona s.s. include coprophily and necrophagy.
Resumo:
Wolbachia are maternally inherited intracellular bacteria that infect a wide range of arthropods and nematodes and are associated with various reproductive abnormalities in their hosts. Insect-associated Wolbachia form a monophyletic clade in the α-Proteobacteria and recently have been separated into two supergroups (A and B) and 19 groups. Our recent polymerase chain reaction (PCR) survey using wsp specific primers indicated that various strains of Wolbachia were present in mosquitoes collected from Southeast Asia. Here, we report the phylogenetic relationship of the Wolbachia strains found in these mosquitoes using wsp gene sequences. Our phylogenetic analysis revealed eight new Wolbachia strains, five in the A supergroup and three in the B supergroup. Most of the Wolbachia strains present in Southeast Asian mosquitoes belong to the established Mors, Con, and Pip groups.
Resumo:
The genus Macrobrachium Bate, 1868 is one of the best examples of widespread crustacean genera distributed globally throughout tropical and subtropical waters. Previous investigators have noted the systematic complexity of the group, and have suggested rearrangements within the family Palaemonidae. Our phylogenetic analysis of new mitochondrial DNA sequences of 58 species of Macrobrachium distributed mainly in America support the hypothesis of monophyly of this genus, if Cryphiops Dana, 1852 is accepted as a generic synonym. We concluded that the independent evolution of different types of life cycle (abbreviated larval development-ALD and extended larval development-ELD) must have occurred more than once in the history of the group. Similarly, we also concluded that the current type species of the genus, Macrobrachium americanum Bate, 1868, should not be considered valid, as previously proposed. The synonymy of two members of the `olfersi` species complex (M. birai Lobao, Melo&Fernandes, 1986 and M. holthuisi Genofre&Lobao, 1978) with M. olfersi (Wiegmann, 1836) was confirmed. Similar results were found in comparing M. petronioi Melo, Lobao&Fernandes, 1986 and M. potiuna (Muller, 1880), in which the genetic divergence placed M. petronioi within the level of intraspecific variation of M. potiuna. The taxonomic status of the genus Cryphiops, as well as theories on the origin of Macrobrachium, is also called into question.
Resumo:
The phylogenetic relationships amongst 29 species of Carlia and Lygisaurus were estimated using a 726-base-pair segment of the protein-coding mitochondrial ND4 gene. Results do not support the recent resurrection of the genus Lygisaurus. Although most Lygisaurus species formed a single clade, this clade is nested within Carlia and includes Carlia parrhasius. Due to this new molecular evidence, and the paucity of diagnostic morphological characters separating the genera, Lygisaurus de Vis 1884 is re-synonymised with Carlia Gray 1845. Our analysis is also inconsistent with a previous suggestion that Lygisaurus timlowi should be removed to Menetia, a genus that is distantly related relative to outgroups used here. Intraspecific variation in Carlia is, in several instances, greater than interspecific distance. The most strikingly divergent lineages are found within C. rubrigularis, which appears to be paraphyletic, with southern populations more closely related to C. rhomboidalis than to northern populations of C. rubrigularis. The two C. rubrigularis-C. rhomboidalis lineages form part of a major polytomy at an intermediate level of divergence. Lack of resolution at this level, however, does not appear to be due to saturation or loss of phylogenetic signal. Rather, the polytomy probably reflects a period of relatively rapid diversification that occurred sometime during the Miocene.
Resumo:
Skinks from the genera Eulamprus, Gnypetoscincus and Nangura are a prominent component of the reptile fauna of the mesic forests of the east coast of Australia and have been the subject of numerous ecological studies. Highly conserved morphology and the retention of ancestral traits have limited our understanding of the relationships within and among these genera beyond an initial identification of species groups within Eulamprus. To address this deficit and to explore the relationships between Eulamprus and the monotypic genera Nangura and Gnypetoscincus, sections of two mitochondrial genes (ND4 and 16S rRNA) were sequenced and subjected to Bayesian phylogenetic analysis. This phylogenetic analysis supports recognition of the three species groups proposed for Eulamprus (murrayi, quoyii and tenuis) and indicates that this genus is paraphyletic, with Gnypetoscincus and Nangura being proximal to basal lineages of the tenuis group. To resolve these and broader problems of paraphyly, we suggest that each of the species groups from 'Eulamprus' should be recognised as a distinct genus. The phylogenetically and ecologically distinct water skinks of the quoyii group would be retained within Eulamprus and the diverse species of the tenuis group allocated to Concinnia. We suggest placing the monophyletic murrayi group, endemic to the rainforests of central eastern Australia, in a new genus ( yet to be formally described). The sequencing data also revealed the existence of a genetically divergent but morphologically cryptic lineage within E. murrayi and substantial diversity within E. quoyii. There is evidence for two major habitat shifts from rainforest towards drier habitats, one leading to the quoyii group and the second defining a clade of three species within the tenuis complex. These ecological transitions may represent adaptations to general drying across eastern Australia during the late Miocene - Pliocene. Each of the major areas of east coast tropical or subtropical rainforest contains multiple phylogenetically diverse endemic species, reflecting the long-term persistence and high conservation value of wet forest habitats in each area.
Resumo:
Applied and Environmental Microbiology, Vol. 73, No.4
Resumo:
Based on histology, the placentae of eutherians are currently grouped in epitheliochorial, endotheliochorial and haemochorial placentae. In a haeckelian sense, the epitheliochorial contact with marked histiotrophic feeding by uterine milk is generally considered as primitive, especially since similar contacts exist in Marsupials. In contrast, the more intimate endotheliochorial and haemochorial contact, facilitating haemotrophic nutrition, is interpreted as a derived state. A cladistic analysis based on the phylogenetic relationships established by molecular analyses reveals that the basic clades are all characterized by an endotheliochorial or haemochorial placenta, and that the epitheliochorial placenta evolved at least three times in a convergent manner. This evolution may be explained by the fact that the epitheliochorial placenta in eutherians is more efficient in nutritional transfer (flow rate by exchange surface). Moreover, this arrangement may confer an advantage to the mother who can probably reduce the degree of manipulation by a genetically imprinted embryo.
Resumo:
Phylogenetic relationships among species of the Myzorhynchella Section of Anopheles (Nyssorhynchus) were investigated using the nuclear ribosomal DNA second internal transcribed spacer (ITS2), the nuclear whitegene and mitochondrial cytochrome oxidase subunit I (COI) regions. The recently described Anopheles pristinus and resurrected Anopheles guarani were also included in the study. Bayesian phylogenetic analyses found Anopheles parvus to be the most distantly related species within the Section, a finding that is consistent with morphology. An. pristinus and An. guarani were clearly resolved from Anopheles antunesi and Anopheles lutzii, respectively. An. lutzii collected in the same mountain range as the type locality were found within a strongly supported clade, whereas individuals from the southern state of Rio Grande do Sul, tentatively identified as An. lutzii based on adult female external morphology, were distinct from An. lutzii, An. antunesi and from each other, and may therefore represent two new sympatric species. A more detailed examination of An. lutzii sensu latoalong its known geographic range is recommended to resolve these anomalous relationships.
Resumo:
Shrews of the genus Sorex are characterized by a Holarctic distribution, and relationships among extant taxa have never been fully resolved. Phylogenies have been proposed based on morphological, karyological, and biochemical comparisons, but these analyses often produced controversial and contradictory results. Phylogenetic analyses of partial mitochondrial cytochrome b gene sequences (1011 bp) were used to examine the relationships among 27 Sorex species. The molecular data suggest that Sorex comprises two major monophyletic lineages, one restricted mostly to the New World and one with a primarily Palearctic distribution. Furthermore, several sister-species relationships are revealed by the analysis. Based on the split between the Soricinae and Crocidurinae subfamilies, we used a 95% confidence interval for both the calibration of a molecular clock and the subsequent calculation of major diversification events within the genus Sorex. Our analysis does not support an unambiguous acceleration of the molecular clock in shrews, the estimated rate being similar to other estimates of mammalian mitochondrial clocks. In addition, the data presented here indicate that estimates from the fossil record greatly underestimate divergence dates among Sorex taxa.
Resumo:
Tribe Rhipsalideae is composed of unusual epiphytic or lithophytic cacti that inhabit humid tropical and subtropical forests. Members of this tribe present a reduced vegetative body, a specialized adventitious root system, usually spineless areoles and flowers and fruits reduced in size. Despite the debate surrounding the classification of Rhipsalideae, no studies have ever attempted to reconstruct phylogenetic relationships among its members or to test the monophyly of its genera using DNA sequence data; all classifications formerly proposed for this tribe have only employed morphological data. In this study, we reconstruct the phylogeny of Rhipsalideae using plastid (trnQ-rps16, rpl32-trnL, psbA-trnH) and nuclear (ITS) markers to evaluate the classifications previously proposed for the group. We also examine morphological features traditionally used to delimit genera within Rhipsalideae in light of the resulting phylogenetic trees. In total new sequences for 35 species of Rhipsalideae were produced (out of 55: 63%). The molecular phylogeny obtained comprises four main clades supporting the recognition of genera Lepismium, Rhipsalis, Hatiora and Schlumbergera. The evidence gathered indicate that a broader genus Schlumbergera, including Hatiora subg. Rhipsalidopsis, should be recognized. Consistent morphological characters rather than homoplastic features are used in order to establish a more coherent and practical classification for the group. Nomenclatural changes and a key for the identification of the genera currently included in Rhipsalideae are provided. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Stingless bees (Meliponini) constitute a diverse group of highly eusocial insects that occur throughout tropical regions around the world. The meliponine genus Melipona is restricted to the New World tropics and has over 50 described species. Melipona, like Apis, possesses the remarkable ability to use representational communication to indicate the location of foraging patches. Although Melipona has been the subject of numerous behavioral, ecological, and genetic studies, the evolutionary history of this genus remains largely unexplored. Here, we implement a multigene phylogenetic approach based on nuclear, mitochondrial, and ribosomal loci, coupled with molecular clock methods, to elucidate the phylogenetic relationships and antiquity of subgenera and species of Melipona. Our phylogenetic analysis resolves the relationship among subgenera and tends to agree with morphology-based classification hypotheses. Our molecular clock analysis indicates that the genus Melipona shared a most recent common ancestor at least similar to 14-17 million years (My) ago. These results provide the groundwork for future comparative analyses aimed at understanding the evolution of complex communication mechanisms in eusocial Apidae. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
This study focuses on morphological and molecular data analyses, misidentifications, and phylogenetic inconsistencies regarding Bradypus variegatus (the brown-throated sloth) and B. tridactylus (the pale-throated sloth). Misidentifications were recorded on 75 of 313 museum specimens of Bradypus. Almost 90% of the misidentified specimens were B. variegatus from north-central Brazil, erroneously attributed to B. tridactylus. These misidentified specimens are reported in taxonomic reviews as the southernmost records of B. tridactylus. A history of confusing nomenclature regarding sloth species exists, and these particular misidentifications could be attributable to the similarity in face and throat color between B. variegatus from north-central Brazil and B. tridactylus. The molecular phylogeny of morphologically confirmed sloth specimens exhibits 2 monophyletic lineages representing B. variegatus and B. tridactylus. The split time between these 2 lineages was estimated at 6 million years ago (mya), contradicting previous studies that estimated this divergence to be 0.4 mya. Taxonomic inconsistencies were detected when comparing the molecular phylogeny to previously published DNA sequences ascribed to B. tridactylus. Misidentification or introgression could underlie such phylogenetic incongruities. Regardless of their causes, these discrepancies lead to misstatements regarding geographic distribution, phylogeny, and taxonomy of B. variegatus and B. tridactylus.